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ABSTRACT

FGF21 is a hormone produced primarily by the liver with several metabolic functions, such as
induction of heat production, control of glucose homeostasis, and regulation of blood lipid levels.
Due to these actions, several laboratories have developed FGF21 analogs to treat patients with
metabolic disorders such as obesity and diabetes. Here, we performed a systematic review and meta-
analysis of randomized controlled trials that used FGF21 analogs and analyzed metabolic outcomes.
Our search yielded 236 articles, and we included eight randomized clinical trials in the meta-analysis.
The use of FGF21 analogs exhibited no effect on fasting blood glucose, glycated hemoglobin, HOMA
index, blood free fatty acids or systolic blood pressure. However, the treatment significantly reduced
fasting insulinemia, body weight and total cholesterolemia. None of the included studies were at
high risk of bias. The quality of the evidence ranged from moderate to very low, especially due to
imprecision and indirection issues. These results indicate that FGF21 analogs can potentially treat
metabolic syndrome. However, more clinical trials are needed to increase the quality of evidence
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and confirm the effects seen thus far.
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INTRODUCTION

Discovcred in 2000, fibroblast growth factor 21
(FGF21) is a peptide hormone of the endocrine
FGF subfamily, along with FGF23 and FGF15/19
(1). The liver is the primary site of the production
of this hormone, although white and brown adipose
tissues (WAT and BAT) also express this gene (1-3).
The structural domains of FGFs are well conserved,
and the core region of the protein consists of 12
B-sheets. However, FGF21, similar to other FGFs of
the endocrine subfamily, lacks a heparin-binding site.
This difference means that these FGFs do not bind to
endothelial receptors and can travel greater distances
through the bloodstream (4). To act on target
cells, FGF21 binds to FGF receptors and p-klotho
coreceptors, which activate the extracellular signal-
regulated kinase pathway. However, how FGF21
causes its multiple cellular effects remains unclear (5).
Dipeptidyl peptidase 4 and fibroblast activation protein
(FAP) can cleave the N- and C-terminal regions of
FGF21. C-terminal cleavage by FAP shortens the
hormone’s half-life in circulation (6).
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Various factors, such as diet, exercise, drug use,
and metabolic conditions, regulate the gene expression
and levels of FGF21 (6,7). Fasting and specific diets
(ketogenic, low-calorie, and methionine-restricted)
increase plasma levels and gene expression of FGF21
in both animals and humans (8-12). High-fat and
sucrose-rich diets also increase plasma levels and gene
expression of FGF21 in the liver and pancreatic islets
(13-16). In cell culture, high concentrations of glucose
and fatty acids increase FGF21 in pancreatic islets and
hepatocytes (13,17). In addition, fatty acid infusion
increases plasma levels of FGF21 (17).

Using overexpression or knockout models allows
us to investigate the metabolic effects of FGF21.
First, FGF21 knockout mice exhibit increased glucose
tolerance (18). Moreover, knockout or knockdown
pancreatic f-cells are less autophagic (13). On the
other hand, mice overexpressing FGF21 exhibit
reduced body weight, with reduced blood glucose,
insulin, total cholesterol, and triglycerides (TAG).
Furthermore, increased expression of FGE21 increases
the concentration of bile salts in the liver and small
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intestine, probably caused by significant changes in
the expression profile of genes in the metabolism of
cholesterol and bile salts in these organs. These models
also show reduced hepatic TAG and cholesterol in the
stool (19).

The functions of FGF21 have spurred several
research groups to test the effects of treatment with
FGEF21 or developed analogs on models of metabolic
diseases such as obesity and diabetes (20). In
preclinical trials, using FGF21 reduced weight gain
and fat and lean mass, independent of food and water
consumption, which increased in some studies (21-
25). Increased energy expenditure and thermogenesis
help explain these effects (26,27). Regarding plasma
concentrations of energy substrates and other metabolic
substances, treatment with FGF21 reduced glucose
and glycated hemoglobin, TAG, and total cholesterol,
with a reduction in VLDL and LDL but increased
levels of HDL and plasma fatty acids (21,25,28-31).
Furthermore, using FGF21 analogs increased plasma
levels of p-hydroxybutyrate, indicating induction of
hepatic pf-oxidation (26,28).

Difterent factors help to explain this improvement
in glucose homeostasis. First, FGF21 increases glucose
tolerance and insulin sensitivity, reducing the HOMA
index and increasing phosphorylation of protein
kinase B and extracellular signal-regulated kinase in
WAT and BAT. In addition, FGF21 reduces glucose
production in the liver, inhibiting the expression
of glucose-6-phosphate phosphatase (G6Pase) and
phosphoenolpyruvate carboxykinase (PEPCK). Finally,
FGF21 increases tissue glucose uptake, stimulating the
expression of the GLUT1 glucose transporter, and
increases hepatic glycogen synthesis (28,31-35). The
improvement in blood lipid levels corroborates the
effect of FGF21 on the reduction of atheroma plaque
in mice on a high-fat diet (32).

Regarding the cardiovascular system, treatment with
FGF21 analogs increases heart rate and blood pressure
but improves heart condition and endothelial function
(36-38). This treatment reduces inflammation in the
blood vessels and the amount of cholesterol in the
arteries (39). FGE21 also regulates the levels of various
hormones in the blood, reducing insulin, leptin, and
glucagon levels while increasing the concentration of
adiponectin and FGF21 itself (21,28,32). In this sense,
treatment with FGF21 analogs increases the number of
pancreatic islets and insulin secretion (40). In addition,
FGF21 acted on the liver of the models, reducing
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organ weight, in addition to the amount of TAG and
cholesterol, hepatic steatosis scores, plasma levels of
hepatic enzymes, and the expression of inflammatory
and fibrotic genes, indicating a reduction in liver
damage (21,24,41,42). FGF21 increases cholesterol
concentration in the feces and reduces lipid synthesis
in the liver through sterol-responsive element-binding
protein 2 (SREBP-2) inhibition (39). These effects
help explain the reduction in cholesterolemia and the
levels of hepatic cholesterol.

In adipose tissue, treatment with FGF21 analogs
increases the expression of GLUT1 and peroxisome
proliferator-activated receptor y coactivator la in WAT,
indicating a greater capacity for glucose uptake and
mitochondrial respiration. In BAT, FGF21 also alters
the gene expression profile, leaving cells with greater
thermogenic, glucose uptake, lipogenic, and lipolytic
capacity (23,28,31,43).

FGF21 also acts on the immune and inflammatory
system, reducing ex vivo secretion of IL-1f by human
macrophages and reducing the expression of MMP-9
and ICAM-1 in WAT, in addition to the amount of
CDG68 cells in this tissue (9,28,32). In addition, using
FGF21 reduces TNF-a levels (37).

Indiabetic or obese models, FGF21 analog treatment
reduced urine volume, the amount of creatinine in
the urine, and the plasma levels of urea and creatinine
(22,30). The same treatment increased the amount of
chlorine in the urine (22). Furthermore, using FGF21
analogs reduces the amount of TAG and cholesterol
in the kidneys, the levels of lipid peroxidation, and
inflammatory and fibrotic factors in the kidneys (30).
These results indicate an improvement in diabetes and
kidney function.

In bone metabolism, using FGF21 increases plasma
levels of CTX-1, indicating induction of bone resorption
(25). These results indicate that FGF21-based therapies
are promising for the treatment of nonalcoholic fatty
liver disease, type II diabetes, and obesity (44,45).

The positive results of FGF21 analogs in preclinical
trials stimulated the pharmaceutical industry to move
toward clinical trials. Thus, in phase I and II clinical
trials, several companies have tested FGF21 analogs
created with different technologies in healthy humans
or those with metabolic disorders. Here, we performed
a systematic review and meta-analysis of clinical trials
using FGF21 analogs to summarize the evidence
of success or failure of this type of treatment for the
future.
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MATERIALS AND METHODS
Search for articles and inclusion criteria

We followed the PRISMA 2020 guide (46) to develop
this systematic review and meta-analysis (Table S1). We
searched for articles indexed in the PubMed, Scopus,
and SciELO databases up to March 2023 using the
search key ((((men) OR (women)) AND (obesity) OR
(diabetes) OR (dyslipidemia) OR (hypertension)) AND
(FGF21 AND (agonist OR analog))) AND (glycemia
OR hblac OR HOMA OR weight OR cholesterol
OR FFA OR “blood pressure”). The three authors
independently analyzed the abstracts of articles obtained
in the search, and we included only randomized clinical
trials of FGF21 analogs versus placebos. In addition,
the three authors independently analyzed the included
articles and excluded articles that did not have extractable
data from the studied outcomes, namely, fasting blood
glucose, glycated hemoglobin, fasting blood insulin,
HOMA index, body weight, total blood cholesterol,
systolic blood pressure, and blood free fatty acids.

Data extraction and analysis

The three authors independently extracted data from the
included articles. First, we extracted the data manually,
or when the manuscript presented the data in the form
of graphs, we used the program WebPlotDigitizer 4.5

| Scopus: 107 articles found |
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(47). Finally, we analyzed the data obtained using
RevMan 5.4.1 software with random effects and
standard mean difference methods.

Analysis of risk of bias and summary of the quality
of evidence

First, two authors independently analyzed the included
articles for risk of bias using the RoB 2 algorithm (48).
Then, we assessed the risk of publication bias based on
the funnel plots generated by RevMan 5.4.1 and using
Egger’s test (49). Finally, we summarize the evidence-
based quality on the GRADE algorithm (50).

RESULTS
Systematic review

Our search yielded 237 published articles, one of which
was duplicated between databases. We excluded 227
during abstract analysis: 190 were not clinical trials,
and 37 did not use FGF21 analogs as an intervention.
Thus, we thoroughly analyzed nine articles in total. We
excluded one of them (51) for not having an analyzable
outcome. Thus, we included eight randomized clinical
trials (52-58) in the meta-analysis (Figure S1). Table S2
contains a summary of the characteristics of each study
and the participants included in this meta-analysis.

Pubmed: 130 articles found |

| SciELO: none article found |

A 4

237 aniclw

—>| One duplicated article excluded

»
>

-37 did not use FGF21 analogs as an intervention

227 articles excluded in abstract analysis:
- 190 were not clinical trials

A
| 9 articles fully analyzed |

—>| One article was excluded for not having an analyzable outcome

A 4

8 articles included

Figure S1. Flow chart of article selection for meta-analysis.
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Table S1. PRISMA checklist

FGF21 analogs: a meta-analysis

Location
Section and Topic Item # Checklist item where item
is reported
TITLE
Title 1 |dentify the report as a systematic review. Page 1
ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts checklist. Page 1
INTRODUCTION
Rationale 3 Describe the rationale for the review in the context of existing knowledge. Pages 1 and 2
Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Page 2
METHODS
Eligibility criteria B Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Page 3
Information sources 6 Specify all databases, registers, websites, organizations, reference lists and other sources searched or consulted Page 3
to identify studies. Specify the date when each source was last searched or consulted.
Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Page 3
Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many Page 3
reviewers screened each record and each report retrieved, whether they worked independently, and if applicable,
details of automation tools used in the process.
Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each Page 3
report, whether they worked independently, any processes for obtaining or confirming data from study
investigators, and if applicable, details of automation tools used in the process.
Data items 10a  List and define all outcomes for which data were sought. Specify whether all results that were compatible with Page 3
each outcome domain in each study were sought (e.g., for all measures, time points, analyses), and if not, the
methods used to decide which results to collect.
10b  List and define all other variables for which data were sought (e.g., participant and intervention characteristics, Page 3
funding sources). Describe any assumptions made about any missing or unclear information.
Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how Page 3
assessment many reviewers assessed each study and whether they worked independently, and if applicable, details of
automation tools used in the process.
Effect measures 12 Specify for each outcome the effect measure(s) (€.9., risk ratio, mean difference) used in the synthesis or Page 3
presentation of results.
Synthesis methods 13a  Describe the processes used to decide which studies were eligible for each synthesis (e.g., tabulating the study Page 3
intervention characteristics and comparing against the planned groups for each synthesis (item #5)).
13b  Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing Page 3
summary statistics or data conversions.
13c  Describe any methods used to tabulate or visually display results of individual studies and syntheses. Page 3
13d  Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was Page 3
performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and
software package(s) used.
13e  Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup Page 3
analysis, meta-regression).
13f  Describe any sensitivity analyses conducted to assess robustness of the synthesized results. Page 3
Reporting bias 14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting Page 3
assessment biases).
Certainty assessment 1115 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. Page 3
RESULTS
Study selection 16a  Describe the results of the search and selection process, from the number of records identified in the search to Fig. S1
the number of studies included in the review, ideally using a flow diagram.
16b  Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they Page 3
were excluded.
Study characteristics 17 Cite each included study and present its characteristics. Table S2
Risk of bias in studies 18 Present assessments of risk of bias for each included study. Fig. S2
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Location
Section and Topic Item # Checklist item where item
is reported
Results of individual 19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an Pages 5 and 8
studies effect estimate and its precision (e.g., confidence/credible interval), ideally using structured tables or plots.
Results of syntheses 20a  For each synthesis, briefly summarize the characteristics and risk of bias among contributing studies. Pages 5 and 8
20b  Present results of all statistical syntheses conducted. If meta-analysis was performed, present for each the Pages 5 and 8
summary estimate and its precision (e.g., confidence/credible interval) and measures of statistical
heterogeneity. If comparing groups, describe the direction of the effect.
20c  Present results of all investigations of possible causes of heterogeneity among study results. Pages 5 and 8
20d  Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. Pages 5 and 8
Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis Fig. S2
assessed.
Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. Table 1
DISCUSSION
Discussion 23a  Provide a general interpretation of the results in the context of other evidence. Pages 9, 10,
and 12
23b  Discuss any limitations of the evidence included in the review. Page 12
23c  Discuss any limitations of the review processes used. Page 12
23d  Discuss implications of the results for practice, policy, and future research. Page 12
OTHER INFORMATION
Registration and 24a  Provide registration information for the review, including register name and registration number, or state that the Page 12
protocol review was not registered.
24b  Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Page 12
24c  Describe and explain any amendments to information provided at registration or in the protocol. Page 12
Support 25 Describe sources of financial or nonfinancial support for the review, and the role of the funders or sponsors in Page 12
the review.
Competing interests 26 Declare any competing interests of review authors. Page 12
Availability of data, code 27 Report which of the following are publicly available and where they can be found: template data collection forms; Page 12

and other materials
review.

data extracted from included studies; data used for all analyses; analytic code; any other materials used in the

The studies included participants with an average age
of 54, mostly men (59%) and white (87%). In addition,
all participants were at least overweight and may have
type 11 diabetes. The analyzed studies used five different
FGF21 analogs: 1) LY2405319, a human FGF21 analog
containing modifications in its primary sequence to create
greater stability and large-scale production (59); 2) PE-
05231023, an analog consisting of two molecules of
human FGF21 modified and conjugated to an antibody,
aimed at increasing the half-life (60); 3) Pegbelfermin,
a pegylated human FGF21 with an increased half-life
(53); 4) AKR-001, human FGF21 with point mutations
conjugated to an antibody, targeting greater receptor
affinity and half-life (61); and 5) LLF580, human
FGEF21 stabilized by an inserted disulfide bond and
antibody conjugation, increasing its half-life (57).

Arch Endocrinol Metab, 2024, v.68, 1-14, €220493.

Effects of FGF21 analogs on glucose homeostasis

First, we analyzed the effect of FGF21 analogs on
fasting blood glucose. This analysis included seven
studies and 434 subjects, 321 in the treatment group
and 113 in the control group. Treatment produced no
effect on the outcome, with an estimated eftect (95%
CI) of -0.11 (-0.34, 0.11), Z = 0.99 (p = 0.32). The
heterogeneity was 12 = 0% (Figure 1A).

Next, we evaluated glycated hemoglobin levels
on FGF21 analog treatment in three studies with
252 participants, 180 in the treatment group and 72
in the placebo groups. Again, the use of FGF21 had
no significant effect, with an estimated effect (95%
CI) of -0.02 (-0.31, 0.26), Z = 0.15 (p = 0.88). As
with the previous analysis, heterogeneity was low
(Figure 1B).
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A Favours [FGF21 Analog] Placebo Std. Mean Difference Sid. Mean Difference
Study or Subgroup Mean SD _ Total Mean  SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Gaich 2013 LY2405319 3 mg 0195 164 10 0176 164 2 22%  -0.21F173,131] —
Gaich 2013 LY2405319 10 mg -0372 167 8 0176 164 3 29%  -0.30[1.64,1.03 T
Gaich 2013 LY2405319 20 mg -0.581 167 13 0176 164 3 32% -0.43[1.70,0.84) -_—
Dong 2015 PF-05231023 0.5 mg -1132 2329 10 -1456 2507 2 22% 0.13}1.39, 165 b —
Dong 2015 PF-05231023 1.5 mg 825 283 10 1456 2507 2 21% 0.750.81,2.31] S Ea—
Dong 2015 PF-05231023 5 mg 1698 1924 10 1456 2507 2 22%  -0.11F1.63,1.41)  —
Dong 2015 PF-05231023 15 mg -16.98 2588 10 1456 2507 2 22%  -D.09F1.61,143 .
Dong 2015 PF-05231023 50 mg -2862 3041 10 -1456 2507 2 22% -0.431.87,1.10] e R
Dong 2015 PF-05231023 100 ma -1698 2588 10 -1456 2507 2 22% -0.09F1.61,1.43] I B
Dong 2015 PF-05231023 200 mg -1080 2442 10 -1456 2507 2 22% -0.20(1.72,1.32) e
Talukdar 2016 PF-06231023 § mg 1047 1524 12 -882 1242 2 23%  -0.10(1.60,1.39) —
Talukdar 2016 PF-05231023 25 mg 154 1202 10 -882 1242 2 22%  -050[204,1.0 —
Talukdar 2016 PF-05231023 100 mg 1289 1233 10 -882 1242 2 22%  -0.30(1.83,122 —
Talukdar 2016 PF-05231023 140 mg -2086 1391 10 -882 1242 2 21% -0.79 2.3, 0.78] —
Kim 2017 PF-05231023 26 my -042 155 19 22 241 5 53% 0.100.88, 1.08] i
Kim 2017 PF-05231023 50 mg 033 171 18 -22 241 4 44% 0.13}0.95,1.22] e
Kim 2017 PF-05231023 100 mg 042 203 15 <22 241 5 50% 042(0.89,1.13] !
Kim 2017 PF-05231023 150 mg 34 181 19 22 241 5 53%  -0.06[1.05,093) ==
Kaufman 2020 AKROD1 21 mg GW 147 148 6 085 145 5 35% 0.36 [-0.84, 1.57] —t
Kaufman 2020 AKROO1 70 mg GW -1.82 i 6 0B5 145 4 20% -1.713.30,-012]

Kaufman 2020 AKROD1 70 mg Q2W -0.26 1.24 6 033 139 4 31% -0.41 }1.70, 0.88) —
Kaufrman 2020 AKROD1 140 ma Q2wW 0.26 1.73 9 033 139 4 37% -0.04F1.22,1.14) 1
Rader 2022 LLF580 02 041 31 -02 041 30 203% 0.00F0.50,0.50) o
Loamba 2023 Pegbelfermin 3 mg Qw 51 284 2 10 W8 21 03% 0.70F3.72,512)

Loomba 2023 Pegbelfermin 9 me OW 127 37 0 10 79 3 3% 0.07 [1.22,1.35] e
Loomba 2023 Pegbelfermin 18 mg W <75 388 10 10 3ra 3 30% -0.421.73,0.88] ——
Loomba 2023 Pegbelfermin 27 mg W -a7 376 7 10 3748 3 27% -0.47 [-1.85,0.91] ——
Loomba 2023 Pegbelfermin 18 mg Q2W 69 382 13 10 3ra 3 32% -0.08[1.33,1.18) —r—
Loomba 2023 Pegbelfermin 36 mg Q2w 59 36 710 38 3 28%  -010[1.46,1.26) ——
Total (95% CI) 321 113 100.0%  -0.11[-0.34,0.11] L
Heterogeneity: Tau™= 0.00; Chi*= 8.98, df= 28 (P=1.00), F= 0%

: ~ ;] E 1
Testfor overall effect Z=0.99 (P = 0.32) Favours [FGF21 Analog] Favours [Placebo]

B FGF21 Analog Placebo Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI

Charles 2019 Pegbelfermin 1 mg QD 032 077 24 -003 074 6 101% 0.45 [-0.46,1.35]
Charles 2018 Pegbelfermin 5 mg QD 019 076 24 -003 074 6 102% 028 -0.61,1.18] F—
Charles 2019 Pegbelfermin 20 mg QD 006 079 24 -003 074 6 103% 011 (0.78,1.01] -
Charles 2019 Pegbelfermin 20 mg QW -0.05 074 24 -003 074 6 103% -0.03 (0,92, 0.87] 1
Rader 2022 LLF580 -01 027 31 0 013 30 318% -0.46 (0.97,0.05] —e
Loomba 2023 Pegbelfermin 3 mg QW 058 065 5 001 068 3 36% 0.75(0.77,2.27] ]
Loomba 2023 Pegbelfermin 8 mg G 008 066 11 001 068 3 50% 010(1.18,1.38] —_—
Loomba 2023 Pegbelfermin 18 mg GW 006 07 10 001 068 3 49% 0.07 (1.22,1.36] —
Loomba 2023 Pegbelfermin 27 mg QW -0.26 066 7 001 068 3 44% -0.37 (1.73,1.00] [
Loomba 2023 Pegbelfermin 18 mg Q2W  -0.08 068 13 001 068 3 52% -013F1.38,1.13] I
Loomba 2023 Pegbelfermin 36 mg QW 054 066 7 001 068 3 4% 0.72(0.69,213] I
Total (95% C1) 180 72 1000%  0.02[-0.31,026] *

Heterogeneity. Tau®= 0.00; Chi®= 6.82, df= 10 (P = 0.74); F= 0%

o i -2 -1 0 1
Test for overall effect Z=0.15 (P = 0.88) Favours [FGF21 analogs] Favours [placebo]

Cc FGF21 Analog Placebo Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean  SD Total Mean  SD Total Weight IV, Random, 95% CI IV, Randorn, 95% CI
Gaich 2013 LY2405319 3 mg 877 5502 10 -285 5515 3 37%  -0.1001.39,1.19) —
Gaich 2013 LY2405319 10 mg -332 5543 & -285 5515 2 25%  -0.48}2.07,1.08 —_—
Gaich 2013 LY2405319 20 mg 36 5516 13 -285 5515 3 38%  -0.57[1.84,071) —_—
Dong 2015 PF-05231023 0.5 mg 148 517 10 -327 685 2 27% 0.311.22,1.84 —_—1T
Dong 2015 PF-05231023 1.5 mg 0 B12 10 -327 BBS 2 26% 0.48[1.05,2.03] S E—
Dong 2015 PF-05231023 5 mg 222 78 10 -327 BBS 2 26% 0.66 [0.89, 2.21] _—
Dong 2015 PF-05231023 15 mg 074 854 10 -327 BBS 2 27% 0.44 [-1.00, 1.98] S - E—
Dong 2015 PF-05231023 50 mg 053 633 10 -327 665 2 27% 0.40}1.13,1.03) ——
Dong 2015 PF-05231023 100 mg 2211 496 10 -327 665 2 27% 0.2141.31,1.73] —
Daong 2015 PF-05231023 200 mg -359 1076 10 -3.27 665 2 27%  -0.0311.55,1.49 —
Talukdar 2016 PF-05231023 § g 669 488 12 -197 427 2 27%  -0.72[-2.25081] —
Talukdar 2016 PF-05231023 25 my -4B1 449 10 197 427 2 26%  -0.55[2.08,1.00] ——
Talukdar 2016 PF-05231023 100 mg 66 443 10 187 427 2 25%  -0.87}2.56,062] —
Talukdar 2016 PF-05231023140mg ~ -484 424 10 -1987 427 2 26%  -062}217,082] R B
Kim 2017 PF-05231023 25 my 41 BB 19 -4 154 5 B4% 0.32 F0.67, 1.31] —
Kim 2017 PF-05231023 50 mg 47 73 18 4 154 4 53% 0.250.84,1.33] —_—T
Kim 2017 PF-05231023 100 mg 228 107 15 -4 154 5 B1% 010 }0.92,1.11] — T
Kim 2017 PF-05231023 150 myg A1 83 19 -4 154 5 64% 0.32[0.67,1.31] —
Kaufman 2020 AKROO1 21 g QW -2044 2011 6 -057 2548 5§ 39%  -0.80-2.06,0.46] —
Kaufman 2020 AKROO1 701g QW -3947 2103 6 -057 2548 4  26%  -1.54[308,-001) — ]
Kaufman 2020 AKROO1 70mg Q2 -244 2056 6 -1536 2285 4 38%  -0.38[1.66,0.80] —
Kaufman 2020 AKRO01 140mg Q2w -3198 2693 O -1536 2285 4 43%  -0.60[1.81,081] E— —
Rader 2022 LLF580 48 8451 31 29 8168 30 222%  -0.91[1.44,-039 —
Total (95% CI) 272 96 100.0%  -0.30[-0.55,-0.05] <>
Heterageneity Tau*= 0.00; Chi*= 20.01, df= 22 (P = 0.56); F= 0% 3 8 t b
Testfor overall eflect: Z=2.37 (P=0.02) Favours [FGF21 analogs] Favours [placebo]
D FGF21 Analog Placebo Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Talukdar 2016 PF-05231023 5 mg 464 1839 12 448 488 2 30% 0.01[-1.48, 1.51] R
Talukdar 2016 PF-05231023 25 mg 412 553 10 448 489 2 29%  -0.06[1.58 146
Talukdar 2016 PF-05231023 100 mg 469 1018 10 448 483 2 29% 0.02[1.50, 1.54]
Talukdar 2016 PF-05231023 140 mg 300 832 10 448 488 2 20%  -0.06[1.57, 148 —
Charles 2019 Pegbelfermin 1 mg QD 058 52 24 -1.38 495 6 83% 037 }0.53,1.27) —
Charles 2018 Pegbelfermin 5 mg QD -075 518 24 -138 495 6 84% 0.12[-0.78,1.01] o —
Charles 2019 Pegbelfermin 20 mg QD -213 507 24 -1.38 495 6 84% -01411.04,0.79 = T .
Charles 2018 Pegbelfermin 20 my QW 017 428 24 -138 495 6 83% 0.34[-0.56, 1.24] —
Kaufman 2020 AKROO1 21 mg QW -083 152 6 020 198 5 45%  -050[1.81,064] —
Kaufrman 2020 AKRO01 70 mg QW -295 148 6 029 198 4 26%  -1.74F3.34,-0.14]
Kaufman 2020 AKROO1 70 mg Q2w 168 146 6 -082 169 4 40%  -0.50[1.80,0.80] e
Kaufman 2020 AKROO01 140 mg QW -192 184 9 -082 169 4 46%  -05511.75 066 —1
Racler 2022 LLF580 1.7 327 31 06 321 30 264% 0.34-0.17,0.84] e
Loomba 2023 Peghelfermin 3 mg Qv 04 607 1 063 58 2 12% 0.00[-2.40, 2.40]
Loomba 2023 Pegbelfermin 8 mg QW 155 562 3 063 58 1 12% 0.09[-2.23,242] —
Loomba 2023 Peghelfermin 18 mg Qw 143 605 6 063 58 2 26% 012[1.49,1.72) e a—
Loomba 2023 Peghelfermin 27 mg QW -423 589 7 063 58 2 25%  -0.73}2.37,080] —1—
Loomba 2023 Peghelfermin 18 mg QW -0.88 587 11 063 58 2 30%  -D.24}175,1.27]
Loomba 2023 Peghelfermin 36 mg Q2% -581 585 5 063 58 2 21%  -092F271,088 3
Total (95% CI) 229 90 100.0%  -0.02[-0.27,0.24] < 2
Heterogeneity: Tau*= 0.00; Ch*= 1173, df= 18 (P = 0.86); F= 0% t t + + 2
£

i = 2 - 1 2
Testfor overall effect Z=0.12 (P = 0.81) Favours [FGF21] Favours [Placebo]

Figure 1. Forest plot comparing the effects of FGF21 analogs to placebo on glucose homeostasis and insulin resistance. The analog used and its dose
are indicated in each line. QD: administered every day; QW: administered every week; Q2W: administered every two weeks. (A) Fasted glucose. (B)
Glycated hemoglobin. (C) Fasted insulin. (D) HOMA index.
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Fasting insulinemia was significantly lower in
participants who received treatment with FGEF21
analogs, with an estimated effect (95% CI) of -0.30
(-0.55, -0.05), Z = 2.37 (p = 0.02). This analysis
included 368 subjects, divided into 272 in the treatment
groups and 96 in the control groups, for a total of six
studies. Heterogeneity was also low (Figure 1C).

However, this reduction in fasting insulin did not
reflect an improvement in the HOMA index. Treatment
with FGF21 analogs had an estimated effect (95% CI)
of -0.02 (-0.27, 0.24), Z = 0.12 (p = 0.91), in an
analysis including five studies and 319 participants (229
in the treated groups and 90 in the control groups).
Heterogeneity was low (Figure 1D).

Effects of FGF21 analogs on body weight and blood
pressure

Treatment with FGF21 analogs had a significant effect
on participants’ body weight, with an estimated effect
(95% CI) of -0.29 (-0.55,-0.04), Z = 2.23 (p = 0.03).
The analysis included five studies, with 342 subjects,
divided between 254 in the treatment groups and 88
in the control groups, and the heterogeneity was low
(Figure 2A).

We evaluated the effect of FGF21 analogs on systolic
blood pressure. The analysis included two studies and
124 participants, 78 in the treatment group and 46
in the control groups. The treatment did not change
the outcome, with an estimated effect (95% CI) of

SD Total Weight

3

WRWWWWISODDDNR NN WN

A FGF21 Analog Placebo
Study or Subgroup Mean  SD Total Mean
Gaich 2013 LY2405319 3mg -0.679 1.77 10 -0.229 1.75
Gaich 2013 LY2405319 10 mg -1.75 1.84 8 -0229 175
Gaich 2013 LY2405319 20 mg -1.49 177 13 -0.229 1.75
Talukdar 2016 PF-05231023 5 mg -3.24 239 12 -119 226
Talukdar 2016 PF-05231023 25 mg -3.11 237 10 -1.19 226
Talukdar 2016 PF-05231023 100 mg -5.66 231 10 -1.19 226
Talukdar 2016 PF-05231023 140 mg -488 215 10 -119 226
Charles 2019 Pegbelfermin 1 mg QD -0 267 24 -012 256
Charles 2019 Pegbelfermin 5 mg QD -0.44 267 24 -012 256
Charles 2019 Pegbelfermin 20 mg QD -1.04 27 24 -012 256
Charles 2019 Pegbelfermin 20 mg QW -048 26 24 -012 256
Rader 2022 LLF580 01 259 N 12 254 3
Loomba 2023 Pegbelfermin 3 mg QW 065 3.24 5 123 352
Loomba 2023 Pegbelfermin 9 mg QW 217 342 | 123 352
Loomba 2023 Pegbelfermin 18 mg QW 258 351 10 1.23 352
Loomba 2023 Pegbelfermin 27 mg QW -0.54 331 7 123 352
Loomba 2023 Pegbelfermin 18 mg Q2W 235 346 13 1.23 352
Loomba 2023 Pegbelfermin 36 mg Q2w 318 339 8 123 352
Total (95% CI) 254 88
Heterogeneity: Tau®= 0.00; Chi*= 11.39, df= 17 (P = 0.84); F= 0%

Test for overall effect: Z= 2.23 (P = 0.03)
FGF21 Analog Placebo

B Study or Subgroup Mean _ SD Total Mea

Kaufman 2020 AKR001 7 mg QW -3 9.05 6 -7 9875
Kaufman 2020 AKR0O1 21 mg QW 4 905 6 -7 975
Kaufman 2020 AKR001 70 mg QW -8 9.05 [ -7 975
Kaufman 2020 AKR0O1 140 mg QW 3 765 5 -7 975
Kaufman 2020 AKR001 7 mg Q2W 0 853 6 0 1017
Kaufman 2020 AKR0O1 21 mg Q2w -2 9.05 6 0 1017
Kaufman 2020 AKR001 70 mg Q2W -4 953 6 0 1017
Kaufman 2020 AKR0OO1 140 mg Q2W 0 853 6 0 1017
Rader 2022 LLF580 24 654 31 -08 629

Total (95% CI) 78
Heterogeneity: Tau®= 0.00; Chi*= 3.27,df=8 (P=0.92), F=0%
Test for overall effect: Z=1.83 (P = 0.07)

SD_Total Weight

2

2
2
2
2
2
2
0

46

56% 0.38[1.24,2.00]
48% 1.04 [0.71,280] —
57%  -0.09[1.70,151) ——
4.4% 1.04[0.80,2.87] —
5.8% 0.00 [-1.60, 1.60]
57%  -019[1.79,1.42) —
56%  -0.36[198,126) —
5.8% 0.00 [-1.60, 1.60]
56.6% 0.49[-0.02,1.00] — -
100.0%  0.36[-0.02,0.74] -
1

FGF21 analogs: a meta-analysis

0.36 (-0.02,0.74), Z = 1.83 (p = 0.07). As with other
outcomes, heterogeneity was low (Figure 2B).

Effects of FGF21 analogs on blood total cholesterol
and free fatty acids

Total cholesterol levels were also much lower in the
groups treated with FGF21 analogs. This treatment had
an estimated effect (95% CI) of -0.55 (-0.87, -0.22),
Z = 3.32 (p = 0.0009), in analysis with four studies
and 228 participants, 169 in the treatment groups and
59 in the placebo groups. As with previous outcomes,
heterogeneity was low (Figure 3A).

Finally, only one study verified the effects of treatment
with FGF21 analogs on plasma levels of free fatty acids.
The drug did not alter lipid levels, demonstrating an
estimated eftect (95% CI) of 0.21 (-0.37, 0.78), Z =
0.7 (p = 0.48). The analysis included 60 patients, 44 in
the treatment group and 16 in the placebo group. The
heterogeneity of the analysis was low.

Analysis of risk of bias and quality of evidence

We did not identify a high risk of bias in any of the
studies included in this meta-analysis. However, in all
studies, there are some concerns. According to our
analysis of the articles, the lack of reported information
does not allow us to exclude the risk of deviations in
the intended interventions and the selection of reported
results (Figure S2). However, we do not believe this
dramatically impacts the quality of the evidence obtained.

Std. Mean Difference
IV, Random, 95% CI

Std. Mean Difference
IV, Random, 95% CI

39%  -0.24(1.53,1.08]
25%  -0.75[-2.36,088] —
40%  -0.67[1.96,061] _—
28%  -0.81[234,073] —
27%  -0.75(2.31,081] —
21%  -1.79(3.54,-0.04]
23%  -1.5813.28,013 r
8.1% 0.01 -0.89, 0.90) —_—
81%  -0.12(1.01,078 S
81%  -0.33(1.23,058 —_—
8.1% -0.14[1.03,0.76] —_—
253%  -0.42[093,0.08] —
32%  -0.15(1.59,1.28) —_—
4.0% 0.26[1.03,1.54) —_—t
3.9% 0.36 -0.94,1.66] —_—
34%  -0.48(1.85,090] —_—
41% 0.31[0.96,1.57] —_—
36% 052[0.83,1.88) R
100.0%  -0.29[-0.55,-0.04] <&
1

-2 = 1 2
Favours [FGF21 analog] Favours [placebo]

Std. Mean Difference
IV, Random, 95% CI

Std. Mean Difference
IV, Random, 95% CI

-2 E]
Favours [FGF21 analog] Favours [placebo]

Figure 2. Forest plot comparing the effects of FGF21 analogs to placebo on body weight and systolic blood pressure. The analog used and its dose are
indicated in each line. (A) Body weight. QD: administered every day; QW: administered every week. (B) Systolic blood pressure. QW: administered every

week; Q2W: administered every two weeks.
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A

FGF21 Analog Placebo Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean  SD Total Mean  SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Gaich 2013 LY2405319 3 mg 213 1107 10 -0.632 1018 3 62% 0.24 [-1.06, 1.53]
Gaich 2013 LY2405319 10 mg. -19.2 11.88 8 -0.632 1018 2 34% -1.44(318,031] ———————
Gaich 2013 LY2405319 20 mg -154 995 13 -0.632 1018 3 56% -1.40(-2.77,-0.02] S Ta—
Dong 2015 PF-05231023 0.5 mg -03 112 10 -43 175 2 45% 0.35F1.17,1.88] ——
Dong 2015 PF-05231023 1.5 mg -03 104 10 -49 175 2 45% 0.38[1.15,1.90] 1
Dong 2015 PF-05231023 5 mg -362 1469 10 -49 175 2 45% 0.08 [-1.44,1.60] —
Dong 2015 PF-05231023 15 mg -8.9 9.9 10 -49 175 2 45% -0.34[-1.87,1.19] S
Dong 2015 PF-05231023 50 mg -101 82 5 -49 175 1 22% -0.512.71,1.69)
Dong 2015 PF-05231023 100 mg -11.4 134 10 -49 175 2 45% -0.43[1.97,1.10] —
Dong 2015 PF-05231023 200 mg -65 188 10 -49 175 2 45% -0.08 [-1.60, 1.44] —
Talukdar 2016 PF-05231023 5 mg -10.74 1244 12 -657 1117 2 46% -0.32[-1.82,1.19] —
Talukdar 2016 PF-05231023 25 mg -11.45 1075 10 -657 1117 2 45% -0.42[-1.85,1.11] —
Talukdar 2016 PF-05231023100mg  -18.08 10.37 10 -657 1117 2 41% -1.02[-261,058] —
Talukdar 2016 PF-05231023 140mg  -21.37 11.35 10 -657 1117 2 40% -1.21-2.83,042] -
Rader 2022 LLF580 -0.76  0.46 3 -04 045 0 38.4% -0.78[-1.30,-0.26] —
Total (95% Cl) 169 59 100.0%  -0.55[-0.87,-0.22] -
Heterogeneity: Tau®= 0.00; Chi*= 8.57, df= 14 (P = 0.79); F= 0% & % 1 3
Testfor overall effect Z= 3.32 (P = 0.0009) Favours [FGF21 analogs] Favours [placebo]

B
FGF21 Analog Placebo Std. Mean Difference Std. Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Loomba 2023 Peghelfermin 3 mg QW 015 018 5 006 02 2 11.9% 0.411.26,2.08]
Loomba 2023 Pegbelfermin 8 mg QW 012 018 7 006 02 18.0% 0.29-1.07,1.66] —

3
Loomba 2023 Peghelfermin 18 mg QW 0.03 019 0 006 02 3 200% -0151.44,1.15] —
Loomba 2023 Peghelfermin 27 mg QW 014 017 6 006 02 2 127% 0.40[1.23,2.02)
Loomba 2023 Peghbelfermin 18 mg Q2W 012 018 9 006 02 3 19.3% 0.30[1.01,1.62] 1
Loomba 2023 Pegbelfermin 36 mg Q2W  0.03 0.18 7 006 02 3 182% 0.15[1.21,1.50] 1

Total (95% CI) 44 16 100.0% 0.21[-0.37,0.78] ’
% n ; N

Heterogeneity: Tau®= 0.00; Chi*= 0.44, df= 5 (P = 0.99), F= 0' B3 R 0 1
Testfor overall effect Z=0.70 (P = 0.48) Favours [FGF21 analog] Favours [Placebo]

Il

Figure 3. Forest plot comparing the effects of FGF21 analogs to placebo on total cholesterol and free fatty acids. The analog used and its dose are
indicated in each line. (A) Total cholesterol. (B) Plasmatic free fatty acids. QW: administered every week; Q2W: administered every two weeks.

Risk of bias domains

Study
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D1: Bias arising from the randomization process. Judgement

D2: Bias due to deviations from intended intervention. @ Some concerns
D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome. ‘ Low

D5: Bias in selection of the reported result.

Figure S2. Bias risk analysis. The articles were analyzed according to the RoB 2 algorithm, and the figures were plotted with the RobVis web application.

Table 1 summarizes the quality of evidence obtained DISCUSSION

in this meta-analysis. The quality of evidence ranges from  In this systematic review and meta-analysis, we
moderate to very low. In almost all outcomes, we reduced  evaluated the effects of FGF21 analogs as a treatment
quality due to indirectionality and imprecision. We also ~ for metabolic disorders. Our searches allowed the
identified publication bias in glycated hemoglobin,  inclusion of eight randomized clinical trials, and our
fasting insulin, HOMA index, body weight, systolic  assessments did not identify a high risk of bias in any of
blood pressure, and plasma free fatty acid outcomes  them. Three of the outcomes included in the analysis
(Figure S3). On the other hand, the sizeable estimated ~ demonstrated significant results in the included studies,
eftect of the use of FGF21 analogs on cholesterolemia  favoring the use of FGF21 analogs in the clinic: fasting
indicated an increase in the quality of the evidence. blood insulin, body weight, and cholesterolemia.

Copyright® AE&M all rights reserved
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Table 1. GRADE summary of findings

FGF21 analogs: a meta-analysis

Outcomes Number of participants (studies)

Quality of the evidence (GRADE)

Size effect (95% Cl)

Fasting glucose 434 (7 studies)

Glycated hemoglobin 252 (3 studies)
Fasting insulin 368 (6 studies)
HOMA 319 (4 studies)
Body weight 342 (5 studies)

Systolic blood pressure 124 (2 studies)

Total cholesterol 228 (4 studies)

Moderate, due to indirectness

Very low, due to indirectness, imprecision, and
publication bias

Very low, due to indirectness, imprecision, and
publication bias

Very low, due to indirectness, imprecision, and
publication bias

Very low, due to indirectness, imprecision, and
publication bias

Very low, due to indirectness, imprecision, and
publication bias

Moderate, due to indirectness, imprecision, and

-0.11 (-0.3410 0.11)
-0.02 (-0.31 10 0.26)

-0.30 (-0.55 10 -0.05)

-0.02 (-0.27 10 0.24)

-0.29 (-0.55 10 -0.04)

0.36 (-0.02 t0 0.74)

-0.55 (-0.87 t0 -0.22)

Free fatty acids 60 (1 study)

Low, due to imprecision and publication bias

size effect
0.21 (-0.37 10 0.78)

Several preclinical trials have already reported on the
effect of FGF21 on reducing plasma insulin levels. For
example, FGF21 treatment in obese monkeys and mice
reduced fasting insulinemia (25,31,33). Moreover,
the administration of human FGF21 mRNA reduced
insulinemia in mice with diet-induced obesity (21).
Similarly, the FGF21 analog .LY2405319 reduced fasting
blood insulin in ApoE - /- mice on an atherogenic diet
and insulin levels in diabetic monkeys (28,62). Gaich
and cols. used this exact analog in 2013 in patients
with obesity and diabetes, where the drug could also
reduce insulin levels (56). Recombinant and PEGylated
versions of human FGF21 also reduce insulinemia in
obese mice and rats (30,37,40). Treatment with FGF21
receptor agonists has a similar effect in obese mice and
monkeys (27,63). On the other hand, some studies
indicate that using FGF21 may have the opposite effect
and increase insulinemia in genetically obese 44/ dband
type I diabetic mice (42,64,65). The reason for these
differences is unclear but may involve using different
analogs and treatment protocols.

Weight loss is also a commonly observed result
in animals treated with FGF21. For example, using
human FGF21 mRNA in obese mice reduces weight
gain (21). FGF21 has a similar effect on obese mice,
rats, and monkeys (9,25,27,29,31,33,37,42,63,60).
Furthermore, different FGF21 analogs or FGF21
receptor agonists reduced the weight of obese models
such as rats, monkeys, and mice (13,22,24). Again,
the drug LY2405319 reduces the body weight of
dyslipidemic mice, diabetic monkeys, and patients with
obesity (28,56,62). Interestingly, FGF21 achieves this
weight-reducing effect through an increase in energy

Arch Endocrinol Metab, 2024, v.68, 1-14, €220493.

expenditure (27,31), as the effects of this hormone on
food consumption remains controversial (22,32,62).
Finally, preclinical trials also indicated that FGF21
has the potential to control cholesterolemia. Again,
treating obese mice with human FGF21 mRNA
reduced the animals’ cholesterolemia (21). Likewise,
FGEF21 or its analogs reduced plasma cholesterol levels
in mice, rats, and monkeys (27,30,37,39,41,42). The
LY2405319 analog demonstrated the same results in
monkeys and patients with obesity (56,62). FGF21
likely reduces cholesterolemia through changes in the
expression profile of genes involved in the metabolism
of bile salts and cholesterol in the liver, in addition to
reducing the capacity for hepatic cholesterol synthesis
due to reduced activity of SREBP-2 (19,39).
However, our meta-analysis did not detect signifi-
cant results in the other evaluated outcomes in the in-
cluded studies: fasting glucose, glycated hemoglobin,
HOMA index, blood free fatty acids, or blood pres-
sure. Preclinical trials with FGF21 and its analogs com-
monly observe reduced blood glucose and improved
glucose homeostasis in different models (13,21,23,27-
34,37,40-43,62-67). Consequently, studies that inves-
tigated glycated hemoglobin levels and the HOMA
index also reported beneficial effects after treatment
with this hormone (25,28-30,37,42,64,65). FGF21
appears to act at different points to reduce plasma glu-
cose levels. First, FGF21 increases glucose tolerance
by inducing the expression of GLUT and hexokinase
and glucose uptake by different tissues (13,23,27-

29,31,33,34,37,42,43,63-65,67). In addition, this

hormone stimulates glycogen synthesis in the liver
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and muscles (34,43). Finally, FGF21 reduces hepatic -
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Figure S3. Funnel plots of comparison between FGF21 analogs and placebo. (A) Fasting glucose. Egger’s test: p > 0.05. (B) Glycated hemoglobin.
Egger’s test: p < 0.05. (C) Fasting insulin. Egger’s test: p < 0.05. (D) HOMA index. Egger’s test: p < 0.05. (E) Body weight. Egger’s test: p < 0.05. (F)
Systolic blood pressure. Egger’s test: p < 0.05. (G) Total cholesterol. Egger’s test: p > 0.05. (H) Plasma free fatty acids. Egger’s test: p < 0.05.
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gluconeogenesis, decreasing the expression of en-
zymes in this pathway, such as G6Pase and PEPCK,
which helps control blood glucose in diabetic models
(27,33,34,42,64,65,68). However, glucose uptake
by brown adipose tissue and increased energy expen-
diture via thermogenesis in this tissue appear to play
an essential role in FGF21-mediated glycemic control
(26,31,43). Brown adipose tissue activity in human
subjects appears heterogeneous and inversely correlat-
ed with metabolic disturbances (69-71). These factors
could help explain the lack of effect of FGF21 on blood
glucose and related outcomes in the clinical studies in-
cluded in this meta-analysis.

It is important to note that we detected a reduction
in insulinemia and body weight with treatment with
FGF21 analogs but without a change in the HOMA
index. However, it is not easy to conclude mechanisms
of metabolic regulation based on the results of a
clinical meta-analysis because we could not estimate
the absolute differences, only the estimated effect
of treatment versus placebo. Thus, if the effect on
insulinemia or weight is minimal, the effect on the
HOMA index will be diluted and undetected. Finally,
the quality of evidence for these outcomes still needs to
be improved. Therefore, it is possible that the accuracy
of the effect on insulinemia and weight needs to be
refined, and future studies may demonstrate that the
effect is insignificant.

Finally, our study indicated that using FGF21 analogs
does not affect subjects’ blood pressure or plasma free
fatty acid levels. Preclinical trials have explored these
outcomes relatively little, but using the FGF21 analog
PF-05231023 increased rat blood pressure (36). On
the other hand, treatment of mice with FGF21 reduces
plasma levels of free fatty acids (27,31). Differences in
brown adipose tissue metabolism between mice and
humans may also help explain the difference in the
results obtained.

Overall, the quality of evidence obtained in this
meta-analysis remains low. The low quality is primarily
due to the small number of clinical studies performed.
None of the outcomes included, except fasting glycemia,
had a sample number greater than 400 individuals,
which reduces the quality of the evidence due to the
imprecision of the results. All studies included patients
who were at least overweight and may have type 2
diabetes. In addition, two studies included patients
with hypertriglyceridemia and one with nonalcoholic
steatohepatitis. The homogeneous characteristics of
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the group of participants may have been responsible for
keeping the heterogeneity of the meta-analysis results
low in all outcomes. Therefore, we did not consider
performing subanalyses with the meta-analysis data.
However, to carry out the meta-analysis, we combined
studies with different FGF21 analogs used at different
doses. Therefore, we prefer to reduce the quality of
evidence obtained due to indirectionality. Based on the
quality of evidence obtained, we anticipate that more
clinical trials using existing drugs could help increase
the quality of evidence by increasing the number
of participants, reducing imprecision, and reducing
indirection by facilitating analyses with a single type of
FGF21 analog.

In conclusion, FGF21 analogs must be tested
in new clinical trials, as they appear to exhibit great
potential for treating signs of Metabolic Syndrome
such as high blood insulin, obesity, and especially
hypercholesterolemia.
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