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ABSTRACT. Tomato is a demanding crop in terms of handling, mainly because irrigation has a strong 

influence on fruit production and quality. Salinity changes the absorption, transport, assimilation, and 

distribution of nutrients in the plant. In general, such effects are analyzed using statistical tests. However, 

fuzzy models allow simulations between points that are not verified in agricultural experimentation. 

Currently, systems with artificial intelligence have excelled in the field of applied sciences, particularly 

fuzzy systems applied to mathematical modeling. The objective of this research was to use fuzzy modeling 

to analyze the biometric variables during the development of hybrid tomatoes under two different 

conditions: the first concerning different water tensions in the soil and the second concerning different 

salinity doses in irrigation. To this end, two models were developed based on an experiment carried out at 

São Paulo State University (UNESP), School of Agriculture, Botucatu, São Paulo State, Brazil. Both models 

sought to estimate the values of biometric variables of the tomato crop. Thus, two models were developed: 

Model 1 regarded water tensions and days after sowing (DAS), while Model 2 featured salinity and DAS. 

Fuzzy models provided results that verified the effects of irrigation and salinity layers. Two Fuzzy Rule-

Based Systems (FRBS), an input processor with two variables, a set of linguistic rules defined from statistical 

procedures with percentiles, the Mamdani fuzzy inference method, and the center of gravity method to 

defuzzification were elaborated for this purpose. The range between −25 and −10 kPa (for Model 1) and 

between 0.08 and 3 dS m−1 (for Model 2) provided the development within the ideal parameters for the 

complete development of the plant cycle. The use of fuzzy logic has shown effectiveness in evaluating the 

development of tomato crops, thus showing potential for use in agricultural sciences. Moreover, the created 

fuzzy models showed the same characteristics of the experiment, allowing their use as an automatic 

technique to estimate ideal parameters for the complete development of the plant cycle. The development 

of applications (software) that provide the results generated by the artificial intelligence models of the 

present study is the aim of future research. 
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Introduction 

Tomatoes are present practically every day in Brazilian cuisine in their multiple forms of consumption: 

fresh or processed as juice, sauce, paste, dehydrated, and sweetened, among others (Ağaoğlu, Ayaz, Ayaz, & 

Yaman, 2022; Amin & Borchgrevink, 2022; Castro et al., 2021). 

Tomato is a demanding crop in terms of handling, mainly because irrigation has a strong influence on fruit 

production and quality, as it is considered sensitive to water deficit (Khapte, Kumar, Burman, & Kumar, 2019; 

Lu, Shao, Cui, Wang, & Keabetswe, 2019; Valcárcel et al., 2020). Proper crop irrigation prevents fruit cracking, 

apical rot, the occurrence of hollow fruits, flower falling, and reduced fruit establishment (Ketsa, 

Wisutiamonkul, Palapol, & Paull, 2019; Simmons et al., 2018; Yahia et al., 2019). 

The quality of water used for irrigation is a key factor for plants to express their maximum development 

and productive potential (Gomaa et al., 2021; Rosa et al., 2020; Ullah, Santiago-Arenas, Ferdous, Attia, & 

Datta, 2019; Wang & Xing, 2017). On the other hand, the use of water with moderate salinity levels has 
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become a common practice, both due to the decrease in the availability of high-quality water and as a strategy 

to improve production (García-Caparrós & Lao, 2018; Nachshon, 2018; Yasuor, Yermiyahu, & Ben-Gal, 2020). 

The effect of salinity is osmotic and can directly affect crop yields (Holanda, Amorim, Ferreira Neto, Holanda, 

& Sá, 2016). Tomato is considered a crop moderately sensitive to the effects of salt, with reductions in its potential 

yield by water with electrical conductivity above 1.7 dS m−1 (Bani, Daghari, Hatira, Chaabane, & Daghari, 2021; 

Bonachela, Fernández, Cabrera-Corral, & Granados, 2022; Feng, Zhang, Wan, Lu, & Bakour, 2017).  

In the presently developed experiments, the effects are analyzed using statistical tests that aim to assist 

in interpreting the results and, thus, verify the real implications caused by the different adopted treatments. In this 

way, mathematical models seek to provide more accurate answers. Fuzzy models allow simulations between points 

that are not verified in agricultural experimentation to be more accurate than regression models. 

According to Benini and Rinaldi (2015), fuzzy logic is the basis for developing methods and algorithms for 

modeling and process control, allowing the reduction of design and implementation complexity, and 

becoming the solution to identification problems hitherto intractable by classical techniques. 

Generally, fuzzy modeling is used in several areas to better understand the observed phenomenon or find 

optimal points. As an example, Oliveira, Viais Neto, Maeda, and Gabriel Filho (2020) assessed the electricity 

consumption of a higher education institution to classify it over the months of the year for a better 

understanding of the phenomenon. Viais Neto et al. (2018) used fuzzy modeling to study the effects of 

different doses of polymers applied to the substrate with irrigation levels on the development of cherry 

tomato seedlings up to the transplanting stage, aiming to weave optimal points relative to seedling 

management. Also, Castro, Saad, and Gabriel Filho (2022) used artificial intelligence techniques applied to 

the optimization of micro-irrigation systems by the Zimmermann-Werner method for the resolution of fuzzy 

linear programming problems. 

Several applications involving fuzzy logic can be found in agricultural sciences, such as crop yield 

improvement and fertilizer use efficiency (Prabakaran, Vaithiyanathan, & Ganesan, 2018), in which rules 

generated by experts have been used. It is also found in agrometeorological models for estimating yield 

(Luydmila, Mikhail, Imran, Tamara, & Anatoliy, 2017), in which the degree of agronomic suitability of the 

cultivation site of a given crop is expressed as a number between 0 and 1. 

Specifically in research on irrigation, applications in water allocation in agriculture (Xie, Xia, Ji, & Huang, 

2018; Elleuch, Anane, Euchi, & Frikha, 2019; Zhang & Guo, 2018; Zhang, Engel, & Guo, 2018) stand out in 

the assessment of soil suitability for irrigation (Hoseini, 2019) and water abstraction (Vema, Sudheer, & 

Chaubey, 2019). 

Particularly, the use of fuzzy models aimed at mathematical modeling of agronomic experiments has 

proved to be highly necessary not only for analyzing the effects of variation in response variables but also for 

the creation of future applications/software to support researchers and farmers. 

Therefore, this research aimed to study the effects of biometric variables during the development of the hybrid 

tomato (Lycopersicum esculentum) under two different conditions using fuzzy modeling: the first condition was 

about different soil water tensions and the second one was about different salinity doses in irrigation. 

Material and methods 

Description of the experiment 

The experimental data used for the fuzzy modeling of this study were analyzed statistically (Silva Junior, 

2018) and employed in the elaboration of the other fuzzy modeling used by Viais Neto et al. (2019a and b). 

The experiment was carried out between June and October 2011 in a protected environment installed in an 

area located in the Department of Rural Engineering of the São Paulo State University (UNESP), School of 

Agriculture, city of Botucatu, São Paulo State, Brazil, with an average altitude of 786 m, latitude 22°51′03″ 

South, and longitude 48°25′37″ West. 

The used pots had a capacity of 15 dm3 and were filled with the soil taken from the 0–0.20-m depth layer, 

classified as a medium-textured Rhodic Ferralsol. The soil was taken, sieved, and air-dried until it reached a 

water content of 4%. The method proposed by Klar (1998) was used to determine soil water content. 

Liming and planting and topdressing fertilization were carried out based on the soil analysis, following the 

recommendation suggested by Trani and Raij (1996). The tomato variety used was the cultivar Katia. Seedlings 

were prepared by the Department of Horticulture and transplanted into pots 45 days after sowing. 
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Sodium chloride (NaCl) was used for water salinization. For this purpose, a 2 M solution (2 times the 

molecular weight of NaCl) was prepared to have a liter of solution. A conductivity meter was used to obtain 

the doses of 0.08, 3, and 5 dS m−1 of water salinity by diluting the respective proportions of 0, 31.07, and 53.96 

mL of the solution in a liter of supply water. 

A soil sample was collected in the 0-0.20-m layer and sent to the Laboratory of Soil Plant Water Atmosphere 

Relationship in the Department of Rural Engineering to determine the water content in the soil as a function of 

soil potentials (Ψ). The soil water retention curve points, adjusted by the Soil Water Retention Curve program 

(Dourado Neto, Lier, Botrel, & Libardi, 1990), allowed the determination of the soil water content as a function of 

soil potentials using the model proposed by van Genucinen (1980). Table 1 shows the equation parameters. 

Table 1. Parameters of the Van Genuchten equation related to the soil water retention curve. 

Soil 
 m N θr θs 

0.07034 0.4610 1.8552 0.1922 0.3058 

 

The following soil characteristic curve was generated after calculating the parameters: 

𝜃0−0.20 = 0.1922 +
0.1136

[1 + (0.07034|Ψ|)1.8552]0.4610
 

Matric requirements (Ψ) of −60, −30, and −10 kPa was established to cause water stress and irrigation was 

determined based on the mass of the pot. Soil water content was inferred from the established Van Genuchten 

equation, and the amount of daily water to reach the established levels was calculated. 

The biometric parameters of tomato measured by Silva Junior, Silva, Klar, Silva, and Tanaka (2018) throughout its 

cycle consisted of plant height (cm), stem diameter (cm), leaf area (cm2), green phytomass (g), and dry phytomass (g). 

According to Silva Junior (2018), plant height corresponded to the distance between the soil base and the 

plant apex; the stem diameter was determined in the basal region of the plant, close to the soil; the leaf area 

was calculated using an estimate using dry leaf phytomass; the calculation of both green and dry phytomass 

corresponded to the sum of the masses of leaflets, petioles, clutches, and stem; and the percentage of deficient 

fruits was calculated for the fruits that presented apical rot. 

The evaluations were destructive seeking to meet the four analyses throughout the cycle (75, 90, 105, and 

120 days after sowing) and 27 plants were used to assess the effects of irrigation and water salinity on the 

tomato crop. Thus, 108 plants (4 × 27) were required for the complete study. 

Fuzzy modeling 

Two fuzzy models were performed to evaluate the development characteristics of the experiment analyzed 

in this study, which used the management of different soil water tensions and salinity doses in irrigation 

throughout the tomato cycle. 

The first modeling (Model 1) aimed to estimate the values of biometric variables of the tomato crop over the days 

after sowing (DAS) versus different soil water tensions (Irrigation) (Figure 1a). Model 2 also estimated the biometric 

variables over DAS, but now testing the effect of different doses of irrigation salinity (Salinity) (Figure 1b). 

Analogously to the methodology proposed by Viais Neto et al. (2019a) for the elaboration of both Fuzzy 

Rule-Based Systems (FRBS), an input processor, a set of linguistic rules, a fuzzy inference method, and an 

output processor were defined so that a real number was generated in the end as an output. 

Fuzzy sets of input variables 

The variable DAS is an input variable for both models, defined using the evolution periods of the 

experiment (75, 90, 105, and 120 days), with four fuzzy sets named Very Low (VL), Low (L), Medium (M), and 

High (H). Specifically in Model 1, the other input variable is Irrigation, in which the fuzzy sets were defined 

according to Viais Neto et al. (2019a). In Model 2, the other variable is Salinity, in which the fuzzy sets were 

defined according to Viais Neto et al. (2019b) (Figure 2). 

Fuzzy sets of output variables 

Several biometric variables were analyzed according to the representative factors of both Models 1 and 2: 

Irrigation x DAS and Salinity x DAS (Table 2). Among the analyzed biometric variables, those that were 
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considered for the models showed interactions between such factors and/or significant simultaneous 

differences between factors. The only variable that did not meet these criteria was Plant Height (Heig) and 

therefore not used in the models. 

  

Figure 1. Tomato fuzzy systems with four output variables (biometric variables): stem diameter, leaf area, green phytomass, and dry 

phytomass. In both systems, days after sowing (DAS) is one of the input variables. In (a) Model 1, the other input variable is soil water 

tension. In (b) Model 2, the second input variable is salinity doses in irrigation. 

 

Figure 2. Triangular relevance functions of the Very Low (VL), Low (L), Medium (M), and High (H) fuzzy sets for the input variables 

DAS, Irrigation, and Salinity. 
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Table 2. Mean Squares (MS) and Coefficients of Variation (CV) of the Analysis of Variance (ANOVA) of the biometric variables to be 

the output variables of Models 1 and 2, labeled Plant Height (Heig), Stem Diameter (Diam), Leaf Area (LA), Green Phytomass (GP), and 

Dry Phytomass (DP), under a 3 × 4 Factorial Scheme. 

Variation factor 

MS 

Model 1  Model 2 

Heig Diam LA GP DP  Heig Diam LA GP DP 

A 101.1 0.16* 10822.0* 7180.3* 327.0*  133.9 0.25* 4528.6* 3531.3* 153.3* 

B 128.6 0.24* 64597.5* 1013.8* 67.3*  402.6* 0.06* 125682.8* 931.4 9.2 

A × B 89.9 0.01 3197.8* 97.7 6.0  72.3 0.05* 2983.8* 1231.3* 52.0* 

CV (%) 17.8 8.1 10.7 9.0 10.4  11.7 10.5 11.7 10.0 11.9 

Legend: Factor A – Irrigation (−kPa) for Model 1 and Salinity (dS m−1) for Model 2; Factor B – DAS (days); (*) Significant by the F-test with a 5% probability of error. 

In Table 2, the variable Heig of Model 1 shows the absence of differences between the levels of analysis 

factors (Irrigation and DAS) and also the interaction between them. The variables Diam, GP, and DP had the 

same behavior, showing differences in the levels of each factor and an absence of interaction between analysis 

factors. Finally, there is an interaction between the analysis factors of the variable LA. In general, the 

coefficients of variation ranged from 8 to 18%. 

The variable Hight of Model 2 shows differences between the levels of the factor DAS but has no differences 

between the factor Salinity as well as no differences of interaction between analysis factors (Salinity and DAS). 

The other variables show an interaction between analysis factors. In general, the coefficients of variation 

remained between 9 and 12%. 

The methodology used to create the membership functions of the fuzzy sets of output variables in the modeling 

performed in this study was similar to that used by Viais Neto et al. (2019a) and is defined in Table 3, using 

percentiles varying at 12.5%. Importantly, one of the two disjunct intervals of the support, whose points have no 

degree of membership 1, was defined with an amplitude equal to 1 for the membership functions L1 and H3. 

Table 3. Definition of delimiters of triangular membership functions of the fuzzy sets Low 1 (L1), Low 2 (L2), Low 3 (L3), Medium 1 

(M1), Medium 2 (M2), Medium 3 (M3), High 1 (H1), High 2 (H2), and High 3 (H3) for the output variables of both Models 1 and 2, using 

percentiles of the data sets for each output variable. 

Fuzzy Set Delimiter 

L1 [ P(0%) - 1 , P(0%) , P(12.5%) ] 

L2 [ P(0%) , P(12.5%) , P(25%) ] 

L3 [ P(12.5%) , P(25%) , P(37.5%) ] 

M1 [ P(25%) , P(37.5%) , P(50%) ] 

M2 [ P(37.5%) , P(50%) , P(62.5%) ] 

M3 [ P(50%) , P(62.5%) , P(75%) ] 

H1 [ P(62.5%) , P(75%) , P(87.5%) ] 

H2 [ P(75%) , P(87.5%) , P(100%) ] 

H3 [ P(87.5%) , P(100%) , P(100%)+1 ] 

Source: Viais Neto et al. (2019a). 

Rules Base 

Twelve (3 × 4) combinations between fuzzy sets of the two input variables were considered to obtain the 

rules base of the fuzzy system in both models. Thus, 12 pairs of the Irrigation × DAS form were created for 

Model 1 and 12 pairs of the Salinity × DAS form for Model 2, according to the methodology used by Viais Neto 

et al. (2019a), and similar to those adopted by Cremasco, Gabriel Filho, and Cataneo (2010), Gabriel Filho, 

Cremasco, Putti, and Chacur (2011), Gabriel Filho, Pigatto, and Lourenzani (2015), Gabriel Filho et al. (2016), 

Gabriel Filho, Silva Junior, Cremasco, Souza, and Putti (2022a), Gabriel Filho, Silva, Putti, and Cremasco 

(2022b), Pereira, Bighi, Gabriel Filho, and Cremasco (2008), Putti, Gabriel Filho, Silva, Ludwig, and Cremasco 

(2014), Putti et al. (2017a), Putti, Kummer, Grassi Filho, Gabriel Filho, and Cremasco (2017b), Putti et al. 

(2021), Putti, Cremasco, Silva Junior, and Gabriel Filho (2022), Martínez et al. (2020), Matulovic, Putti, 

Cremasco, and Gabriel Filho (2021), Góes, Goes, Cremasco, and Gabriel Filho (2022), Boso, Cremasco, Putti, 

and Gabriel Filho (2021a), Boso, Cremasco, Putti, and Gabriel Filho (2021b), and Maziero, Chacur, Cremasco, 

Putti, and Gabriel Filho (2022). 

Similar to those studies, the highest degrees of relevance of each treatment median were calculated after 

the elaboration of the fuzzy output sets, associating the input variables with the output variables. 

The association of combinations of fuzzy sets of the input variables with a fuzzy set of each output variable 

of both Models 1 and 2 was performed similarly to the model established by Viais Neto et al. (2019a and b). 
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Inference, defuzzification methods, and software 

The inference method used in this study was the Mamdani (Mamdani, & Assilian, 1975). The center of 

gravity method was adopted for defuzzification. The value of the linguistic output variable inferred by the 

fuzzy rules is translated into real value. 

The development of FRBS of the present study required the software Matlab®, licensed for the São Paulo 

State University (UNESP), School of Sciences and Engineering, Tupã campus, São Paulo State, Brazil. 

Specifically, the Fuzzy Logic Toolbox of the software was used to prepare three-dimensional graphs and 

contour maps. 

Statistical analysis 

The biometric variables were analyzed statistically using ANOVA (analysis of variance) in two ways: 

considering the factors irrigation and DAS (3 × 4) and later the factors salinity and DAS (3 × 4), thus consisting 

of 12 treatments in each analysis. 

Each treatment had three repetitions. There was no need for a comparison between treatment means, as 

the purpose of the analysis was to identify variables with significant differences between their treatments. 

Thus, variables that did not present significant differences between their treatments were not mathematically 

modeled. 

All statistical analyses were performed using the R software 4.2.0 (R Core Team, 2022), adopting a value 

of p < 0.05 as statistically significant. 

Results and discussion 

Both models were prepared, after calculating the percentiles of the measured data, with the definition of 

the membership functions of the fuzzy sets of the output variables stem diameter, leaf area, green phytomass, 

and dry phytomass (Figure 3). 

 

Figure 3. Membership functions of the fuzzy sets of the output variables of Stem diameter, Leaf area, Green phytomass, and Dry 

phytomass (a) for Model 1 and (b) Model 2. 

Once the membership functions were defined, the highest pertinence degree was taken for each biometric 

variable analyzed, referring to the type of treatment applied during the tomato development. Thus, the 

situation that fits the variable under analysis could be assessed by comparing it with the other treatments, 

thus rating the rules base for the Models (Table 4). 

(a) Model 1                                                        (b) Model 2 
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Table 4. Rule-base of fuzzy systems relating all combinations of fuzzy sets of the input variables with those of the output variables 

(Diam - Stem Diameter, LA - Leaf Area, GP - Green Phytomass, and DP - Dry Phytomass). Input 1 is defined as “Irrigation” for Model 1 

and “Salinity” for Model 2. 

Input variable Output variable 

Input 1 
Input 2 Model 1  Model 2 

DAS   Diam AF GP DP  Diam AF GP DP 

L VL   L3 M1 L2 L2  H1 M1  M3  M2  

L L  L2 H2 L2 L2  M1 H3  H1  H2  

L M  M2 M3 M2 M1  H3 M2  H2  H1  

L H  M3 L2 M2 M3  H2 L3  H1  H2  

M VL  M1 M2 M1 M1  M3 M3  M2  M1  

M L  L2 H1 L2 L3  M3 H2  L3  L3  

M M  H1 M1 M3 M1  H1 M1  M3  H1  

M H  H1 L2 M3 H1  L2 L2  M1  H2  

H VL  M3 M3 H1 H1  M3 H1  H1  M1  

H L  L3 H3 H2 H2  L2 H2  M1  M1  

H M  H3 H1 H2 H2  M1 L3  L2  L2  

H H   H2 L2 H2 H2   L1 L1  L1  L1  

 

The power of analysis coming from the present mathematical modeling stands out, allowing a 

simultaneous comparison of all contour maps of the analyzed response variables. 

Additionally, the way of obtaining the rules base contributes to performing the present method of creating 

Fuzzy Rule-Based Systems. Most fuzzy systems that use the Mamdani inference method are elaborated using 

expert interviews to create their rules base. The rules base is also an important result since the understanding 

of the present system with a table (rules base) becomes easier for many rural producers when faced with the 

interpretation of three-dimensional surfaces. 

The Mamdani method was employed in this present study but without the use of interviews to create the 

rules base. It was generated from a specific methodology using percentiles and the association of fuzzy sets. 

Therefore, Table 4 could be elaborated, which is an extremely important result for the practical use of the 

models developed in this paper. 

The graphical results of the models are presented in the form of surfaces (Figure 4) and contour maps 

(Figure 5) for all biometric variables. 

The Stem Diameter of Model 1 (Figure 5a) had the highest value at a soil water tension of −10 kPa and 105 

DAS. Soil water tensions between −25 and −10 kPa led to a gradual increase in diameter until the end of the 

tomato cycle. In contrast, this development only occurred after 90 days for tensions between −30 and −60 kPa. 

Biomass allocation in stem diameter shows linear increases with increasing water depths, being associated 

with a reduction in phytomass production activity, as energy must be redirected to fruit production (Ullah et 

al., 2021; Zhou et al., 2019). In Model 2, Stem Diameter (Figure 5b) reaches its maximum at a salinity of 0.08 

dS m−1 and 115 DAS. The minimum value was inferred at 90 DAS for a salinity of 5 dS m−1. Salinity caused a 

reduction in stem diameter, as salts accumulate in this case, which affects the osmotic adjustment (Abdeldym, 

El-Mogy, Abdellateaf, & Atia, 2020; Feng et al., 2019). 

The Leaf Area of Model 1 (Figure 5a) has a maximum value at a soil water tension of −10 kPa and 90 DAS. 

The leaf area size was similar at 120 DAS, regardless of the soil water tension. Water deficit decreases the 

number of leaves per plant, leaf area, and leaf longevity due to reduced soil water potential. The most visual 

effect of water deficit is the reduction in leaf area. It leads to reduced water loss and lower energy expenditure 

to control stoma opening and thus minimize impacts (Khapte et al., 2019; Ullah et al., 2021). For Model 2 

(Figure 5b), Leaf Area had the highest value at 90 DAS and salinity of 0.08 dS m−1. In general, the behavior of 

this variable is very similar throughout the tomato cycle according to the treatments, regardless of the salinity 

dose in irrigation. Morphological and anatomical changes in plants are common under salt stress conditions, 

which reflect in the reduction of transpiration as an alternative to maintain the low absorption of saline water; 

one of these adaptations is the reduction in leaf area (Pérez-Labrada et al., 2019; Sassine et al., 2020). 

The Green Phytomass in Model 1 (Figure 5a) obtained a maximum at soil water tension of −10 kPa in the 

last evaluation period. There is no development of green phytomass between −60 to −30 kPa and 75 to 105 

DAS. Similar effects have been observed in studies with the application of irrigation depths so that the 

reduction in green phytomass accumulation is linear as a function of the reduction in the applied depth 

(Hatamleh et al., 2022; Salgado et al., 2021). The highest development for Model 2 (Figure 5b) occurred 
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throughout the cycle for the treatment with a salinity of 0.08 dS m−1. The opposite of this situation occurred 

at 105 DAS for a salinity of 5 dS m−1. 

 

Figure 4. Surfaces generated by Models (a) 1 and (b) 2. 

Finally, the Dry Phytomass behavior in Model 1 (Figure 5a) was similar to that of green phytomass. A 

similar phenomenon occurred in Model 2 (Figure 5b). However, salinity doses in Model 2 influenced the dry 

phytomass more intensely for values above 3 dS m−1. In general, the inhibition in the growth and production 

of phytomass by plants is a response to nutritional imbalance and toxicity, which reflect in-breath loss, root 

expansion, water absorption, and CO2 fixation (Alzahib et al., 2021; Martínez-Andújar et al., 2021; Sousa et 

al., 2022). The decrease in aerial phytomass production by plants irrigated with saline water is almost always 

the result of early senescence caused by the toxic effects of excess salts in the water, which limits leaf area 

expansion and, therefore, reduces dry matter yield (Huang, Zhang, Zhai, Lu, & Zhu, 2019; Okon, 2019; Zörb, 

Geilfus, & Dietz, 2019). 

The normalization of references to the regions of each contour map of the biometric variables (Figure 5) 

was performed by defining as Region A the site with the highest values of the biometric variable (warmer 

colors or red), while Region B will be the one with the lowest values (cooler colors or blue). 
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Thus, Region A in Model 1 is partially or fully inserted between the irrigation levels 60 and −30 kPa for all 

variables. In contrast, Region B is fully inserted between the irrigation levels −25 and −10 kPa. Thus, water 

deficit negatively influences all the variables analyzed throughout the tomato cycle. 

 

Figure 5. Contour maps by Models (a) 1 and (b) 2. 

For Model 2, Region A represents the lowest values inferred for each variable, while Region B represents 

the highest values. The variables most affected by the increase in salinity doses in irrigation are stem 

diameter, green phytomass, and dry phytomass, as Region A of these variables is located between salinity 

doses in irrigation of 4 and 5 dS m−1. In addition, Region B for all variables is partially or fully inserted between 

salinity doses in irrigation of 0.08 and 3 dS m−1, which is in line with Ayres and Westcot (1976), who stated 

that tomato is considered moderately sensitive to salts, with the threshold for the crop at 2.5 dS m−1. 
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Conclusion 

All the biometric variables of the tomato crop analyzed in Model 1 showed a better development for high 

soil water tensions. Water deficit negatively influenced the variables analyzed throughout the tomato cycle. 

In addition, a certain homogeneity was observed in the effects caused by water stresses in the soil on the 

development of the variables stem diameter and green and dry mass. In Model 2, high salinity doses in 

irrigation severely affected the variables stem diameter, green phytomass, and dry phytomass throughout the 

tomato cycle. In addition, low amounts of salinity in irrigation provided the best development for all analyzed 

biometric variables. The use of fuzzy logic helped in modeling the behavior of the tomato crop under different 

management conditions whether due to water deficit or salinity, thus supporting the decision-making 

regarding the most appropriate management method. Thus, it proved to be an important tool to assist in the 

decision-making process of producers. It can be seen in the present mathematical model, which classified 

different conditions according to the development time, salinity, and irrigation conditions offered to the 

tomato crop. These different conditions proved to be favorable for the crop in certain cases but revealed 

situations not so favorable in other cases. Sometimes, these situations are characteristic of the planting site 

and therefore cannot be controlled. However, the model represents, even in such a scenario, an excellent 

decision-making support system, as the rural producer will be able to predict the biometric variables that 

tomato plants will have naturally before planting. The producer can carry out the most appropriate possible 

management for the crop regarding controllable factors, such as Irrigation, which is present in one of the 

models in this study. However, there are situations in which the amount of water is limited, and, in this case, 

the optimal point shown in the models cannot be obtained by the rural producer. Still in this case, the results 

of this study are useful, as the predictability of the behavior of biometric variables helps in the decision-

making by the rural producer. Another conclusion is that the created fuzzy models showed the same characteristics 

of the experiment, allowing their use as an automatic technique to estimate the ideal parameters for the complete 

development of the plant cycle. The development of applications (software) that provide the results generated by 

the artificial intelligence models of the present study is the aim of future research. 
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