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1. Introduction

Obesity is a worldwide health problem, resulting 
from a consequence of an interaction between different 
factors, related to genetics environment (Gittner et al., 
2017), food habits (Kieliszek and Błażejak, 2016) and 
micronutrients deficiency (Sánchez et al., 2016) that may 
be due to lower intake of fruits and vegetables and higher 
intake of poor-quality foods (Beal et al., 2017). A balanced 

antioxidant status has main effect on body balance and has 
been linked to better symptoms associated with obesity 
(Sainz et al., 2015).

In obese cases, oxidative stress markers are increased, 
the increase in reactive oxygen species (ROS) in adipose 
tissue is associated with increasing NADPH oxidase activity 
and decline in antioxidant enzyme levels (Furukawa et al., 
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Resumo
A obesidade e doenças relacionadas representam as maiores ameaças à saúde humana. As nanopartículas (NPs) 
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glutationa, catalase, HDL-C e hormônio tireoidiano. Conclusão: SeNPs e ZnONPs atenuam significativamente a 
hiperlipidemia e o estresse oxidativo, então eles podem ser candidatos em potencial para a melhora da obesidade.
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give high functioning potential and have significant effect 
on increasing glutathione and thioredoxine reductase 
activities (Torres et al., 2012; Srivastava et al., 2014) and 
Zinc oxide nanoparticles, as antibacterial (Xie et al., 2011), 
antioxidant and a therapeutic for treatment of mast cells 
mediated allergies (Agarwal et al., 2019) .In the light of 
these findings, a promising role for ZnONPs and SeNPs 
as antioxidants. Thus, this study aimed to evaluate the 
effects of Se and

Zn oxide nanoparticles supplementation on reducing 
obesity and metabolic syndrome.

2. Materials and Methods

2.1. Chemical

Zinc oxide nanoparticles (ZnONPs) (CAS Number 1314-
13-2) was purchased from sigma aldrich (Saint Louis, Mo, 
USA). The diameters of the particles <50 nm. ZnONPs was 
suspended in 0.9% NaCl. The Suspension was sonicated for 
20 min. in a bath Sonicator to avoid particles aggregations 
(Branson,2510) and was mixed using a vortex mixer for 1min 
before every injection. Selenium nanoparticles (SeNPs) 
were purchased from Shaghai Stone Nano- Technology 
Port Co. Ltd., China. This product is based on the liquid 
Nano-Se as main ingredient for health care supplement. 
The sizes of Se particles ranged from 60 to 80 nm in form 
of orange powder. SeNPs was suspended in 0.9% NaCl 
using magnetic stirrer.

2.2. High Fat Diet (HFD)

It was a mixture of 65% standard chow diet and 35% 
butter fat oil (Chung et al., 2018). Body weight, body length 
and tail length were measured every week for 10 weeks, 
and Lee’s index was calculated using the following formula: 
[Body weight (g) 1/3 x 1000] / body length (cm), and mass 
index (BMI) was calculated as body weight(g)/ body length 
(cm2), (Bernardis, 1970).

2.3. Animals

Adult male albino rats (weighing 160-180g.) were 
obtained from animal house of Biological Application 
Department at Nuclear Research Center, Inches. The rats 
were housed in stainless steel laboratory animal cages in 
a ventilated room, maintained at 25 C° ± 2 C° at 12hr dark/
light cycles. Food and water were provided ad libitum. After 
seven days of acclimatization. Twenty four male rats were 
assigned into four groups, (6 rats/group).
	 Group 1: Control group rats fed an ordinary diet.
	 Group 2: rats fed on high fat diet (HFD) for 10 weeks.
	 Group 3: rats were fed on HFD for 10 weeks and were 

intraperitoneally injected with freshly prepared ZnONPs 
(5mg/kg body weight) (5 days/week) on the last 2 weeks 
of feeding (9th and 10th) (Bashandy et al., 2018).

	 Group 4: rats were fed on HFD for 10 weeks and were 
intraperitoneally injected with SeNPs (30μg/kg body 
weight) (5days/week) on the last 2 weeks of feeding 
(9th and 10th) (Emara et al., 2019).

2004). Therefore, elements that reduce oxidative stress 
are therapeutically effective as antiobesity.

The consumption of high fat diet (HFD) is associated with 
metabolic syndrome causing obesity (Thanopoulou et al., 
2003), resulting in more production of ROS in liver and 
severe changes in mitochondrial lipids (Vial et al., 2011). 
So obesity is considered a cause of morbidity and mortality 
(El-Shiekh et al., 2019).

Leptin is a metabolic hormone, secreted by adipocytes 
proportionally to the amount of body fats. In HFD leptin 
level rises due to leptin resistance that resulting from 
increasing inflammation and oxidative stress (Leon-
Cabrera et al., 2013).

In obese patients, an insufficiency of trace elements 
has been reported mainly, Zinc (Zn) (Berger et al., 1992) 
and selenium (Donma and Donma, 2016). Selenium is 
an essential trace element is associated with enhancing 
immune system (Arthur  et  al., 2003), and capable of 
modulating the inflammatory responses as it acts as 
antioxidant. Selenium is incorporated as selenocysteine 
in antioxidant enzymes as, glutathione peroxidase (Gpx), 
thioredoxin reductase and iodothyronine deiodinase. 
Selenium acts as the redox center of all these enzymes 
and is essential for their biochemical activities. Several 
studies have reported a negative correlation between 
serum selenium and BMI (Stranges et al., 2010; Ortega et al., 
2012). A study demonstrated that obesity and its severity 
were associated with a low dietary selenium intake, every 
increase in dietary selenium intake by I mg/Kg/day causes 
3-6% decrease in the mass of body fat (Wang et al., 2016).

Also zinc is an essential metal, widely used due its 
abundance and non-toxic effect. Zinc plays an important 
role in preventing inflammations in different biological 
processes (Chasapis et al., 2012) by scavenging free radicals 
and acting as antioxidant preventing the formation of 
(OH)- hydroxide ion (Jomova and Valko, 2011) that causes 
severe chronic localized damage in cellular components 
(Powell, 2000). Many studies demonstrated that zinc 
can inhibit postischemic injuries in the brain, kidney, 
retina by replacing iron and copper from binding sites of 
metallothioneins (MT). MT’s are metal-binding proteins 
having an affinity for zinc and many other metals. They are 
included in the reduction of oxidative stress, cytoprotective 
activity and anti-inflammation (Tapiero and Tew, 2003). 
Zn is required for the activity of more than 300 enzymes, 
1000 transcription factors and has a role in the control of 
genetic expression (Carrasco-Rando et al., 2016).

Recently, nanotechnology field increases and produces 
different nanoparticles that can be used in medicine, 
electronics, consumer products. This technology can provide 
nano scale size particles (1-100 nm). Decreasing the size 
to Nano range can change their mechanical, structural, 
chemical and physical properties, thus nanoparticles are 
the most important materials in different life aspects, 
as these particles have one dimension in the range of 
1-100nm, that increases surface area and permeability 
into cells (Mironava  et  al., 2010) and avoiding adverse 
gastrointestinal reactions and improve their absorption 
(Lucas, 2010).

In medicine, the most accepted advantage of 
nanoparticles is the enhanced safely Selenium nanoparticles 
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Animal experiments were carried out in accordance with 
criteria of investigation and Ethics committee of Faculty 
of science, Ain Shams University, Egypt (REC-FS, ref no. 
00033), following the guidelines of the National Institutes 
of Health guide for the use of laboratory animals (NIH).

2.4. Biochemical analyses

At the end of the experimental period (10 weeks), 
rats were fasted over night. Animals were decapitated 
and blood samples were collected in test tubes and 
centrifuged at 3000 r.p.m. for 10 min and kept under -18C° 
for biochemical analysis.

Serum concentrations of T4 and TSH were assessed by 
radio immunoassay using kits purchased from DIA source 
Immuno Assay S.A.-Rue du Bosquet, 2-B 1348 Louvain- La- 
Neuve- Belgium. Serum Leptin was determined using Rat 
ELISA kits (Siemens health care diagnostics, Cambridge, 
MA, USA).

Serum total cholesterol, total lipids, triglycerides and 
high density lipoprotein-cholesterol (HDL– C) levels 
were measured with enzymatic colorimetric methods 
using Bio-diagnostic commercial kits. While low density 
lipoprotein-cholesterol (LDL-C) was calculated according 
to Friedwald’s equation: LDL-C(mg/dl) =TC-(TG/5+HDL-C) 
(Friedewald et al., 1972).

A colorimetric determination of Malondialdhyde (MDA) 
was carried out according to the method of Ohkawa et al. 
(1979), Catalase (CAT) activity in serum was determined 
calorimetrically according to the method of Luck (1974) and 
reduced glutathione (GSH) level in blood was measured 
by a process adopted by Beutler et al. (1963) using kits 
purchased from Bio diagnostic Co, Egypt.

Serum levels of alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), alkaline phosphatase 
(ALP), total protein, albumin, creatinine and uric acid 
were determined using colorimetric assay kits from Bio 
diagnostic Co, Egypt.

2.5. Statistical analysis

Data were statically analyzed using computer program 
COSTAT. Program 3.03,198. Statically comparisons were 
performed using one-way (ANOVA) followed by Duncan’s 
Multiple Range test. Significant differences were considered 
at P<0.05. Results are expressed as Mean ± standard 
deviations. Pearson correlation coefficients were calculated 
for relationship between body weight and some measured 
parameters.

3. Results

Table 1 showed that rats fed HFD revealed a marked 
increase in body weight as compared to rats fed normal 
diet (group1). SeNPs & ZnONPs treatment decreased 
significantly the percentage of body weight gain, Lee’s 
index and body mass index (BMI) compared to HFD fed rats.

The effect of SeNPs and ZnONPs on thyroid hormones in 
HFD rats were studied (Table 2). Rats fed on HFD showed a 
significant decrease in serum level of T4 and a high increase 
in TSH level as compared to control group. Treatment with 
SeNPs alleviate these changes significantly and revealed 
values comparable to control group. Treatment with ZnONPs 
increased significantly T4 level in HFD and decreased level 
of TSH in values less than SeNPs. Also, Table 2 showed 
that leptin hormone in HFD rats exhibited a significant 

Table 2. Effects of selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs), on thyroid hormone (T4), thyroid stimulating 
hormones (TSH) and serum leptin levels in rats fed a high fat diet (HFD).

Groups
Control Normal diet High fat diet (HFD) HFD + SeNPs HFD + ZnONP

Parameters

T4 (pmol/L) 37.13 ± 4.08a 6.93 ±1.2d 27.61 ±2.6c 14.59 ±2.28b

TSH (μU/mL/ml) 1.45 ± 0.54d 10.629 ±1.55a 3.16 ±0.27c 5.32 ± 0.61b

Leptin (ng/ml) 8.21 ± 1.8d 35.07 ± 3.2a 16.33 ± 2.27c 25.01 ± 2.1b

Values are presented as Mean ± SD (n=6). Different letters indicate significant difference (P<0.05). T4 = Thyroxin; TSH = Thyroid stimulating hormone.

Table 1. Effects of selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs) on variation in body weight gain in rats fed 
a high fat diet (HFD).

Groups Control Normal 
diet

High fat diet (HFD) HFD + SeNPs HFD + ZnONP
Parameters

Initial body weight (g) 168.0 ± 9.9 170.6 ±6.4 169.8 ±11.7 168.2 ± 8.4

Final body weight (g) 330.1 ± 12.16c 431.6 ±24.99a 392.8 ± 2.3b 364.0 ± 39.06bc

Body gain 95.9 ± 4.96d 153.1 ±10.75a 131.62 ± 9.6b 110.28 ± 14.56c

Lee’s index 305.96 ±8.3b 337.5 ±42.53a 317.9 ± 6.43b 312.44 ± 8.61b

BMI 0.63 ± 0.04c 0.86 ± 0.01a 0.75 ± 0.05b 0.71 ± 0.1bc

Values are presented as Mean ± SD (n=6). Different letters indicate significant difference (P<0.05).
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increase than control group. SeNPs supplementation 
significantly decreased serum leptin level in HFD rats, 
ZnONPs supplementation also decreased leptin in rats 
fed HFD in an acceptable value.

Table 3 Lipid profile in HFD rats showed that rats fed 
HFD revealed significant increases in Total cholesterol (TC), 
Triglycerides (TG), Total lipids (TL) and LDL and a marked 
decrease in HDL in comparison with control rats fed 
ordinary diet. Treatment with SeNPs significantly reduced 
the dyslipidaemia in HFD rats and comparable results were 
obtained with ZnONPs supplementation to HFD rats but the 
hypolipidemic effect was more potent with SeNPs.

Table 4. The concentration of MDA displayed a significant 
increase in HFD rats as compared to control, meanwhile 
reduced glutathione level and catalase activity were 
significantly decreased in HFD group. Treating rats with 
SeNPs significantly reduced MDA concentration resulted 

in improvement of antioxidant biomarkers level, also 
ZnONPs exhibited similar results, significantly reduced 
MDA and increased catalase activity and GSH level but 
exerted less effect than SeNPs.

Table 5 showed significant increase in liver enzymes 
(ALT, AST and ALP) in HFD group as compared to control rats. 
Intraperitoneal injection of SeNPs and ZnONPs significantly 
decreased liver enzymes elevation. The concentrations 
of total protein and albumin were decreased in HFD rats. 
Treatment with SeNPs and ZnONPs induced significant 
increase in both total protein and albumin compared to HFD. 
Rats fed on HFD, showed marked increase in creatinine and 
uric acid levels compared to control rats. Treatment with 
SeNPs and ZnONPs improved the increase in creatinine 
and uric acid levels than the HFD group.

Correlation coefficient (r) values between body weight 
and lipid parameters showed significant positive correlation 

Table 5. Effects of selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs) on liver enzymes (ALT, AST and ALP) as well 
as creatinine and uric acid levels in rats fed a high fat diet (HFD).

Groups
Control Normal diet High fat diet(HFD) HFD + SeNPs HFD + ZnONP

Parameters

ALT (u/l) 47.34 ± 4.8c 96.32 ± 13.4a 45.6 ± 6.2c 69.2 ±10.8b

AST (u/l) 51.57 ± 6.9c 118.92 ± 11.39a 72.4 ± 4.2b 101.8 ± 7.5a

ALP (u/l) 216.54± 35.4c 693.95 ± 71.8a 471.12± 50.5b 421.52 ± 75.4b

Total protein (g/dl) 8.09 ± 0.36c 6.54 ± 0.38d 9.37 ± 1.13b 10.63 ± 1.13a

Albumin (g/dl) 3.77 ± 0.17b 3.09 ± 0.05c 5.82 ± 0.58a 5.57 ± 0.64a

Creatinine (mg/dl) 0.67 ± 0.05d 1.06 ± 0.03a 0.83 ± 0.09c 0.94 ± 0.04b

Uric acid (mg/dl) 5.77 ± 0.85c 9.71 ± 1.13a 6.97 ± 0.91bc 8.04 ±n 1.2b

Values are presented as Mean ± SD (n=6). Different letters indicate significant difference (P<0.05).

Table 3. Effects of selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs) on lipid profile level in rats fed a high fat 
diet (HFD).

Groups
Control Normal diet

High fat diet 
(HFD)

HFD + SeNPs HFD + ZnONP
Parameters

Cholesterol (mg/dl) 80.8 ±1.64c 126.6 ± 4.48a 85.4 ± 3.57c 102.26 ± 9.03b

Triglycerides (mg/dl) 70.21 ± 8.54d 218.6 ± 22.3a 120.03 ±11.21c 182.1±12.31b

Total lipid (mg/dl) 369.21 ± 32.9c 825.93 ± 73.7a 401.15 ± 44.2c 521.4 ±55.8b

HDL (mg/dl) 52.51 ± 3.5a 34.81 ± 1.79c 45.05 ± 2.58b 48.52 ± 4.43ab

LDL (mg/dl) 14.28 ± 0.99b 48.12 ± 4.72a 16.37 ±1.48b 17.38 ± 3.60b

Values are presented as Mean ± SD (n=6). Different letters indicate significant difference (P<0.05).

Table 4. Effects of selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs) on the level of malondialdhyde (MDA) and 
antioxidant biomarkers glutathione (GSH) level and catalase (CAT) activity in rats fed a high diet (HFD).

Groups
Control Normal diet High fat diet (HFD) HFD + SeNPs HFD + ZnONP

Parameters

MDA (nmol/ml) 52.45 ± 3.19c 85.7 ± 18.6c 46.45 ± 2.89c 66.25 ± 10.9b

GSH (mg/dl) 56.35 ± 5.3a 22.68 ± 1.6c 58.09 ± 7.07a 39.09 ± 9.11b

CAT (μ/ml) 0.68 ± 0.07a 0.058± 0.04d 0.51 ± 0.05b 0.39 ± 0.09c

Values are presented as Mean ± SD (n=6). Different letters indicate significant difference (P<0.05).
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with total lipids (r = 0.705, p <0.01), Total cholesterol (r = 
0.704, p <0.01), Triglycerides (r = 0.689, p <0.01) and LDL 
(r= 0.707199), and a negative correlation between body 

weight HDL-C value (r = -0.421, p <0.01), Figure 1. Also, 
Figure 1. Showed significantly positive correlation between 
body weight and leptin hormone (r = 0.703, p <0.01) and 

Figure 1. Illustrated correlation coefficient between body weight and total lipids, TC, TG, HDL-C, LDL-C, Leptin, TSH and T4 in all tested 
groups.
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TSH (r = 0.707, p <0.01) and negative correlation with 
T4 (r = -0.689, p <0.01).

4. Discussion

Obesity and related syndromes are a worldwide health 
problem represents the greatest risk to human health. 
High fat diet is the main cause for body weight gain and 
obesity (Othman et al., 2019). In the present study, rats 
fed a high fat diet (HFD) for 10 weeks exhibited high body 
weight gain. This obese model is closely related to many 
models in previous studies (Chung et al., 2018). Obesity is 
accompanied with increased oxidative stress, as there is an 
increase in free radical production in adipose tissue and liver 
of mice fed on HFD (Bensenor et al., 2012; Rahman et al., 
2017). So, to relieve obesity and related effects, a proposed 
promising strategy is the use of antioxidant nanoparticles 
in treatment obese rats.

Several studies have demonstrated enhanced 
bioavailability of nanoparticles (De  et  al., 2008; 
Nazarizadeh and Asri-Rezaie, 2016). As the chemical & 
physical properties of nanoparticles such as shape, size 
determine their absorption, cellular uptake, bio distribution 
and clearance. Thus, the present study determined the 
therapeutic effects of SeNPs and ZnONPs in treating obese 
rats fed on HFD.

SeNPs is an antioxidant; micronutrient present in 
many foodstuffs enough amounts of selenium exhibited 
a protective effect against various diseases (Flores-
Mateo  et  al., 2006). Selenium decreases body weight 
significantly and ratio of adipose tissue to body weight 
decreased in rats treated with Se 200μg/kg body weight 
(Wang et al., 2016). Berger et al. (1992) demonstrated effect 
of zinc deficiency in obese patients and its association with 
renal, cardiovascular diseases, diabetes and metabolic 
syndrome has been approved (Gupta, 2017).

Treatment with SeNPs as well as ZnONPs reduced 
body gain by inhibiting the increase in lipid fractions, 
cholesterol total lipids and triglycerides and increasing 
HDL-level (Table 3). This anti-hyperlipidemic effect may 
be due to regulation of hepatic cholesterol metabolism 
and decreasing oxidative stress.

Obesity is associated with increased leptin level. 
The present results revealed that HFD increased serum 
leptin level. It is well-known that physiological leptin 
signaling is important in maintaining body weight. Leptin 
resistance is a characteristic for HFD-induced obesity, 
the mechanism that leads to leptin resistance including 
inflammatory processes and oxidative stress with an 
increase NADPH-oxidase activation which increased the 
ROS production (Wannamethee et al., 2007; Huang et al., 
2015). SeNPs and ZnONPs supplementations could therefore 
induce beneficial effects in reducing peripheral and 
central leptin resistance through their antioxidant activity. 
Previous studies revealed that, selenium M an endoplasmic 
reticulum-resident selenoprotein with antioxidant 
properties was highly expressed in hypothalamic area 
involved in energy metabolism and its removal resulted 
in elevated serum leptin levels increased adiposity and 
hypothalamic leptin resistance (Pitts et al., 2013).

The current experiment showed low T4 level 
and increased TSH level in rats fed HFD, indicated 
hypothyroxinemia. Zhang  et  al. (2018) reported that 
increased intake of HFD and increased serum lipid fractions 
caused a decrease in thyroid T3 & T4 hormones and increased 
TSH level, that can be ameliorated by dietary modification 
(Shao et al., 2014). Nano selenium and nano zinc oxide 
succeeded in restoring thyroid integrity by lowering 
oxidative stress as they increase GSH, GPX activities and 
reduce MDA level. Also nanoparticles effect can be applied 
through affecting hypothalamic pituitary thyroid axis and 
therefore affect the level of thyroid hormones displayed 
in the study.

Development of oxidative stress in HFD rats with 
consequent reduction in the antioxidant defense systems 
were observed as a significant increase in the oxidative 
stress marker (MDA) and decrease in the antioxidant 
markers including GSH & CAT. Meanwhile, treatment 
with SeNPs and ZnONPs elevated GSH level & CAT activity 
significantly and reduced MDA activity.

From the point of view, SeNPs treated group has more 
adjustable antioxidant activity than ZnONPs group. This 
relate to SeNPs potential to keep the glutathione in the 
reduced form, which can remove the free radicals. Also, 
selenium functions in the active site of many antioxidant 
enzymes such as thioredoxin reductase and glutathione. 
ZnONPs may either increase the production of GSH or 
reduce oxidative stress contributing to less degradation of 
GSH or have both effects (Ukperoro et al., 2010). Also, the 
antioxidant effect of zinc has been approved by inhibiting 
OH- formation in antagonist transition metal catalyzed 
reaction (Jomova and Valko, 2011).

The present results demonstrated a significant increase 
in serum liver enzymes (ALT, AST,ALP),serum creatinine 
and uric acid in HFD rats group . These hepatic and renal 
pathological changes can be attributed to the increase of 
MDA, a lipid peroxidation marker that can play a crucial 
role in cellular membrane damage through free radical 
chain reaction mechanism (Wong-Ekkabut et al., 2007). 
Treatment with SeNPs and ZnONPs improved liver and 
kidney functions toward control levels, but the best 
ameliorative effect appears in SeNPs treated group . These 
alleviating effects of nanoparticles may be due to radical 
scavenging ability of SeNPs and ZnONPs in protecting 
the integrity and functions of tissue (Majeed et al., 2018) 
and restoration of endothelial dysfunction and vascular 
disorders through regulating antioxidant enzymes 
(Oztürk et al., 2015; Usrey et al., 2020) also, decreasing MDA 
and free radial levels (Dawei et al., 2009). Tinggi (2008), 
reported that selenium has been used as a substitute for 
sulfur in protein synthesis, and the resultant selenoproteins 
show better biological activity which may be the cause 
for the increased total protein in SeNPs treated group.

5. Conclusion

From the present study, it could be concluded that, 
SeNPs and ZnOPs are strong antioxidants, showed lower 
oxidative stress, good hypolipidemic effects indicating lower 
obesity state accompanied with improvements in liver, 
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kidney functions and thyroid hormones. The under lying 
mechanism of both SeNPs and ZnOPs may be attributed to 
their antioxidant effects. The strongest ameliorative effect 
in decreasing oxidative stress and concomitantly obesity 
and its syndromes have been shown by SeNPs, as it is 
incorporated as selenocysteine (SEC) in many antioxidant 
enzymes as glutathione peroxidase, thioredoxin reductase 
and selenoprotein, where it acts as the redox center of 
all these enzymes. So, SeNPs can be used as a healthy 
supplementary to relieve obesity and its complications. 
Also, ZnONPs is a good antioxidant.
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