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Bernoulli’s equation, energy and enthalpy
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In this paper, we expose and compare two different physical interpretations of Bernoulli’s equation. One
interpretation is that pressure must be a type of potential energy density, and Bernoulli’s equation means the
uniformity of the mechanical energy density in each streamline. However, the pressure behaves as potential energy
density only for steady flows, a situation that includes Bernoulli’s equation. Another interpretation is that pressure
is not a type of potential energy density, the mechanical energy density changes along the streamlines, but the
work from pressure balances the energy variation. The last interpretation implies that enthalpy density is uniform
in each streamline. We conclude that the two interpretations are valid, it is not possible to exclude a particular
interpretation, and both of them do not violate the law of conservation of energy.
Keywords: Bernoulli’s equation, Fluid Dynamics, energy, enthalpy.

1. Introduction

Incompressible and inviscid fluids with a steady flow
obey Bernoulli’s equation (BE), which relates static
pressure P, fluid velocity U, height z, gravitational accel-
eration g, density ρ, and stagnation pressure P0 [1–3],

ρU2

2 + ρgz + P = P0. (1)

The constant P0 is different for each streamline (see
Figure 1). If the fluid is irrotational, P0 is the same for
every streamline [4] (see Figure 1). In this work, we will
refer to static pressure as pressure.

A more popular expression of BE is

ρU2
1

2 + ρgz1 + P1 = ρU2
2

2 + ρgz2 + P2, (2)

where the indices 1 and 2 represent two points in the
same streamline (see Figure 1).

Although the mathematical solutions to BE are very
simple, the physical interpretation of the equation can
be very difficult, and the terminology is not unan-
imous [5–8]. For example, there is disagreement in
the names of the terms ρU2/2, ρgh, P and P0 [8],
controversy in the hypothesis in the derivations of BE [9],
difficulties in the identification of the role of BE in lifting
the plane’s wings [10–12], problems in the microscopic
interpretation of BE [4, 13, 14], questions about BE in
different frames [15], etc. We have chosen for this article
the problem of the physical interpretation of BE as
conservation of energy or enthalpy density [4, 14, 16, 17].

If BE means the conservation of energy density in
each streamline, pressure is a type of energy density
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(see the expression 1). The consequence of this physical
interpretation must be the existence of pressure energy,
a concept that has received much criticism [9, 16–18].
However, the pressure seems to behave as a type of
potential energy density in BE [19]. The interpretation
of BE as conservation of enthalpy density excludes
the concept of pressure energy. A consequence of this
interpretation is that the energy density is not constant
in each streamline, but this would not violate the law
of conservation of energy [4, 14]. We name these two
interpretations “energy interpretation” and “enthalpy
interpretation”.

The goal of this work is to understand how there are
two valid interpretations of BE. We intend to show the
problems with each interpretation, but we will not look
for reasons to exclude any point of view.

This article is organized as follows: Section 2 shows
the conditions where the pressure behaves as a type of
energy density; Sections 3 and 4 describe the “energy
interpretation” and “enthalpy interpretation”, respec-
tively; and we present the discussion and conclusion in
Sections 5 and 6.

2. Pressure as Type of Potential Energy
Density

Usually, in Fluid Mechanics, pressure depends on posi-
tion and time, P = P (r⃗, t). Thus, there is a force density
from the pressure gradient that depends on position and
time, f⃗p(r⃗, t) = −∇P (r⃗, t).

BE describes fluids in steady flow, so the fluid velocity
and the pressure depend only on position, U = U(r⃗) and
P = P (r⃗). We can rewrite BE in the expression (1) as

ρU2(r⃗)
2 + ρgz + P (r⃗) = P0. (3)
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The potential energies depend on position, Epot =
Epot(r⃗). Each conservative force is written as F (r⃗) =
−∇Epot(r⃗). An analogous relation is valid for
conservative force densities. For example, the weight
density f⃗w(r⃗) = −ρgk̂ and the gravitational potential
energy density εg(r⃗) = ρgz obey the relation f⃗w(r⃗) =
−∇εg(r⃗). Analogously, pressure force density is minus
the pressure gradient f⃗p(r⃗) = −∇P (r⃗). Thus, pressure
in BE behaves exactly as a type of potential energy
density.

Curiously, the resultant force density in a fluid that is
described by BE is f⃗ = −ρgk̂ − ∇P (r⃗). This expression
is the Navier-Stokes equation for steady flow without
viscosity, the exact conditions of validity for BE.

In non-steady flows, pressure depends on time, P =
P (r⃗, t). Thus, pressure P (r⃗, t) cannot be a type of
pressure potential energy density in non-steady flows.
Consequently, we cannot generalize the interpretation of
pressure as a type of potential energy density.

We have reason to accept or deny the interpretation
of pressure as a type of potential energy density in the
context of BE. Each interpretation of pressure implies
different physical meanings for BE.

3. Energy Interpretation

If we interpret pressure as a type of potential energy den-
sity, stagnation pressure P0 in expression 1 is the total
mechanical energy density in a point in a streamline. BE
would represent that the mechanical energy density of
an infinitesimal element of the fluid along a streamline
is constant (see Figure 1). In fact, BE describes fluids
without any type of dissipation or heat.

The interpretation of the pressure as potential energy
density implies in the definition of potential pressure
energy,

EP =
∫

R

P (r⃗)dV. (4)

where R represents a region of the fluid.
We can illustrate the concept of pressure potential

energy. In a stream tube, we choose four transversal
surfaces, SA, SB , SC and SD (see Figure 2). Besides

Figure 1: A fluid flows in a streamline. The points 1 and 2
are fixed in the same streamline. The point P represents an
element of the fluid that moves along the streamline. The
vectors represent the two force densities in the element of fluid,
weight density f⃗w and pressure force density f⃗p.

Figure 2: A fluid flows in a stream tube. The surfaces SA,
SB , SC and SD define three regions in the stream tube: R1,
Rtube and R2. The volumes of R1 and R2 are equal to ∆V .
If there is pressure potential energy, the energy of an element
of fluid that moves from R1 to R2 is conserved, and the energy
in the region Vtube is constant. Alternatively, even if there is
no pressure potential energy, the energy in the region Vtube is
constant due to the balance of energy plus work from pressure,
or enthalpy, in surfaces SB and SC .

that, we name the regions between SA and SB , SB and
SC , and SC and SD respectively as R1, Rtube and R2 (see
Figure 2). The volumes of regions R1 and R2 are equal to
∆V . Finally, the volume of region Rtube is Vtube > ∆V .
Thus, if the pressures in the regions R1 and R2 are
uniform, the pressure energies 4 are respectively P1∆V
and P2∆V (see Figure 2).

The fluid was in R1 in the instant t1 with energy E1
(see Figure 2),

E1 = (ρ∆V )U2
1

2 + (ρ∆V )gz1 + P1∆V.

The fluid left the region R1, crossed Rtube and reached
R2 in the instant t2 with the energy E2,

E2 = (ρ∆V )U2
2

2 + (ρ∆V )gz2 + P2∆V.

According to the BE in the expression 2, the energy
of the element of fluid is constant, E1 = E2. We can
interpret that the variations of kinetic and gravitational
potential energies balance the potential pressure energy
variation. BE means the conservation of the mechanical
energy in any element of fluid during motion.

The fixed region Rtube receives and loses matter and
energy through the surfaces SB and SC . A portion of
fluid in region R1 enters the region Rtube through SB

during a time interval ∆t. The fluid transported the
energy E1 into the region Rtube. During the same time,
∆t, the same volume of fluid leaves Rtube through SC

and occupies R2. Thus, the region Rtube lost energy
E2. The identity E1 = E2 from BE in the expression 2
implies that the energy in the region Rtube is constant.
We infer that the energy of any imaginary closed surface
is constant.

4. Enthalpy Interpretation

If we do not interpret pressure as a type of potential
energy density, the energy in the regions R1 and R2 are
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respectively

E1 = (ρ∆V )U2
1

2 + (ρ∆V )gz1,

and

E2 = (ρ∆V )U2
2

2 + (ρ∆V )gz2.

The BE in the expression 2 implies that E1 ̸= E2.
This would mean that the energy in Vtube changes with
time. However, the fluid motion is associated with the
work

W =
∫

R

PdV (5)

We can interpret the pressure as a type of “work
density”. Although pressure is not a type of energy
density, the work contributes to the energy. Thus, on
the surface SB , the region Rtube receives the energy from
matter E1 plus the work W1,

E1 + W1 = ρ(∆V )U2
1

2 + ρ(∆V )gz1 + P1∆V.

Analogously, on the surface SC , the region Rtube loses
the energy E1 from matter with the work W2,

E2 + W2 = ρ(∆V )U2
2

2 + ρ(∆V )gz2 + P2∆V.

The energy plus the work is equal in the regions R1
and R2, E1 + W1 = E2 + W2, according to the BE in
the expression 2. Thus, even if pressure is not a type of
energy density, the energy in the region Rtube is constant.

In principle, the greatness E + W would not be the
enthalpy H itself because the definition is H = E + PV .
However, the enthalpy in a volume ∆V must be H = E+
P∆V . Thus, the conservation of energy density in Rtube

results in the preservation of enthalpy in the regions R1
and R2.

Implicitly, the definition of enthalpy excludes the
interpretation of pressure as energy density due to PV
is not included in energy E, H = E + PV . Thus, in the
expression 1, stagnation pressure P0 means the enthalpy
density. BE represents the conservation of enthalpy
density in each streamline.

5. Discussion

The main contribution of this work is to compare two
different interpretations of BE without trying to exclude
one of them.

We can refute the refutations of the concept of energy
density. The imaginary experiments that supposedly
deny the existence of pressure energy [16–18] present
pressure variations with time, a condition that excludes
steady flows and BE in particular. Thus, these imaginary
experiments do not invalidate the energy interpretation,

but they confirm the restriction of the concept of
potential pressure energy for steady flows [19].

In the enthalpy interpretation, the energy density is
not uniform along a streamline. The fluids seem to
violate the law of conservation of energy. The usual
solution is that the law of conservation of energy relates
the same energy to different instants, and BE connects
different positions at the same instant [4, 14]. Thus,
energy conservation does not imply uniform energy
density. However, how can the fluid transport mass
uniformly and energy non-uniformly? The present article
contributes to this discussion because, even if pressure
is not a type of energy density, the work from pressure
adds or subtracts energy.

The concept of enthalpy is useful for describing
isobaric transformations in ideal gases with uniform
pressure. The work is W = −P∆V , where ∆V is the
volume variation. The enthalpy variation is equal to
heat, ∆H = Q. Unlike isobaric transformations, BE
describes inviscid incompressible fluids with null heat,
Q = 0. The work is too W = −P∆V , but ∆V represents
the volume of an element of incompressible fluid. The
enthalpy variation is null, ∆H = 0. We can apply the
relation ∆H = Q in BE due to Q = 0, but there are deep
differences between incompressible fluids in BE and ideal
gases in isobaric transformations.

Apparently, we can reduce the two interpretations to
a classification of pressure as “potential energy density”
or “work density”. However, the expressions 4 and 5
have different meanings. For non-steady flows, only the
interpretation of pressure as work density is valid. Unlike
the last situation, in fluids at rest without pressure
variations, pressure behaves as a type of potential energy
density, but there is no work from fluid motion. Thus,
steady flows present a particular situation where there
are two interpretations of pressure.

There is no experimental criterion to exclude one of
the two interpretations. We can interpret an experimen-
tal pressure measurement as energy density or not.

For exemplifying BE with numerical values, Figure 3
illustrates five positions at the same streamline. Table 1
presents the values of kinetic energy density (ρU2/2),
gravitational potential energy density (ρgh), and pres-
sure (P ) for each position of Figure 3. The fifth and sixth
columns of Table 1 show the stagnation pressure (P0)

Figure 3: Positions 1, 2, 3, 4, and 5 are at the same streamline.
The fluid motion follows the numerical sequence, and Table 1
shows the values of the kinetic and gravitational potential energy
densities with pressure.
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Table 1: From left to right, the columns present the five
positions of Figure 1, kinetic energy density (ρU2/2), gravita-
tional potential energy density (ρgh), pressure (P ), stagnation
pressure (P0), and sum of the kinetic and gravitational potential
energy densities (ρU2/2 + ρgh) for each position. The unit of
pressure and energy density is 105Pa.

ρU2/2 P gh P P0 ρU2/2 + ρgh

Positions (105Pa) (105Pa) (105Pa) (105Pa) (105Pa)
1 3 3 6 12 6
2 5 3 4 12 8
3 5 2 5 12 7
4 4 3 5 12 7
5 5 4 3 12 9

according to BE and the sum of kinetic and potential
energy densities (ρU2/2 + ρgh), respectively.

In the energy interpretation, the constant stagnation
pressure in Table 1 is the total energy density. However,
in the enthalpy interpretation, the total energy density
must be the non-constant sum ρU2/2+ρgh. In this case,
the pressure variation adds or subtracts the energy den-
sity ρU2/2 + ρgh, and the stagnation pressure becomes
the enthalpy density.

6. Conclusion

We conclude that we can interpret Bernoulli’s equa-
tion in two ways: preservation of mechanical energy
or enthalpy densities along each streamline. It is not
possible to exclude a particular interpretation. Both
interpretations are compatible with the law of conser-
vation of energy.
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