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Ternary phase diagrams in liquid-liquid equilibrium, for the water-ethanol-ethyl acetate system, were calculated
and the results presented in rectangular and triangular diagrams. Initially, the thermodynamical background and
the conditions of equilibrium are presented, involving the equality of activities and the mass balance condition.
From this system of equations, the Rachford-Rice equation is deduced, transforming the problem of eight equations
into a problem of one equation with one unknown. The Non-Random-Two-Liquid model was adopted to calculate
activity coefficients, but other models can be easily adapted. An algorithm is presented to calculate the equilibrium
compositions of this ternary system, together with numerical results. The theoretical-experimental comparison is
in fair agreement, showing the robustness and simplicity of the Rachford-Rice equations. The material presented
here is accessible to undergraduate students.
Keywords: Rachford-Rice, ternary system, liquid-liquid equilibrium.

O equilíbrio líquido-líquido no sistema água-etanol-acetato de etila foi calculado e os resultados foram
apresentados em diagramas retangulares e triangulares. Inicialmente, o contexto termodinâmico e as condições de
equilíbrio são apresentados, envolvendo a igualdade das atividades e o balanço de massas. A equação de Rachford-
Rice é deduzida das oito condições de equilíbrio termodinâmico. Definindo uma nova variável, razão de atividades,
esse problema de oito variáveis independentes é transformado em um problema de uma variável independente.
Serão apresentadas aplicações, adotando-se o modelo de atividade Non-Random-Two-Liquid, para um equilíbrio
ternário, considerando o sistema água-etanol-acetato de etila. Os resultados são apresentados em diagramas
retangulares e triangulares. É feita comparação com experimental, mostrando a qualidade e simplicidade da
equação de Rachford-Rice. Um algoritmo é apresentado para se calcular as composições de equilíbrio, tornando
o material aqui apresentado mais acessível aos alunos de graduação.
Palavras-chave: Rachford-Rice, sistema ternário, equilíbrio líquido-líquido.

1. Introduction

The interpretation of many experimental results in
ternary phase diagrams can be a challenging subject,
usually discussed in a qualitative way. The theoretical
point of view of ternary phase diagrams is not even
addressed in physics and chemistry textbooks, with
the topic being restricted to one component, under
the Clausius-Clapeyron equation or to two components,
most often using a short range lattice model [1, 2]
or several other models, such as the free volume the-
ory [3]. But liquids have also a long range important
interaction that must be considered. Solution of the
Ornstein-Zernick equations [4, 5] has to be carried out
if a more precise nature of the liquid state is to be
investigated. Although the Ornstein-Zernick equations
can be adapted to the molecular case, with a mean
potential, these are equations complex to solve [6, 7] and
not adequated for an undergraduated course.

*Correspondence email address: jpbraga@ufmg.br

Therefore, a more suitable formulation is needed to
explain the ternary equilibrium in the molecular liquid
phase. Surprisingly enough, this important step in the
study of the liquid-liquid equilibrium was formulated
long ago, by Rachford and Rice [8] and certainly not
explored in teaching termodynamics in physics and
chemistry courses, although more popular in the engi-
neering area [9]. These equations, the Rachford-Rice
equations, will be discussed and applied to a ternary
phase diagram in the present work . A thermodynamical
background together with equilibrium conditions will be
explained, from which the Rachford-Rice equations will
be established. As to be shown, there is no need to use
elaborate optimization techniques to solve coupled ther-
modynamic equations, since the problem is transformed
into a one independent variable.

Numerical results for the system, water, ethanol and
ethyl acetate, will be discussed under the NRTL (Non
Random Two Liquid) activity model [10, 11]. These
components will be labeled by the numbers 1, 2 and 3,
respectively. The material presented in this article will
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allow the reader to predict a ternary diagram, thus
complementing the study on phase diagrams. The theory
is not restricted to three components and can easily
be adapted to more components or to other activity
coefficient models.

2. Thermodynamical Background

The Gibbs energy differential form can be expressed
as, dG = −SdT + V dp +

∑
i µidNi or dG =∑

i dµiNi +
∑

i µidNi, as elaborated in basic thermo-
dynamics courses [12], with the variables having their
usual meaning. Comparing these two results, results in,

SdT − V dp +
∑

i

Nidµi = 0 (1)

known as the Gibbs-Duhem equation for the Gibbs
energy. For fixed temperature and pressure,∑

i

Nidµi = 0 (2)

a particular case of the Gibbs-Duhem equation, if
applied to Gibbs energy. Although the proof of the
Gibbs-Duhem equation was given for the Gibbs energy,
the relationship is more general and expressed as [13],∑

i

Nidf i = 0 (3)

with f i =
(

∂f
∂Ni

)
T,p,Nj

the partial molar quantity. If f

is the Gibbs energy, equation (2) is recovered. However,
the quantity f can take on any homogeneous function of
degree one (extensive thermodynamic quantity), such as
other energies, volume or entropy [14].

Gilbert Lewis [15] introduced the concept of activity
in thermodynamics as,

µ(T, p) = µ0(T ) + RT ln a (4)

with a representing the activity. The activity coeficient,
γ, is then defined in the form

a = γx (5)

representing a departure from the mole fraction. For the
ideal system, γ = 1, which is taken as a reference to
calculate excess energies. Therefore, for the excess Gibbs
energy,

GE
i = (µ0(T ) + RT ln xi + RT ln γi)

− (µ0(T ) + RT ln xi)
= RT ln γi (6)

or for many components,

GE = RT
∑

i

xi ln γi (7)

expression to be used along the present work.

A model for the activity coefficient has to be proposed
in order to calculate other thermodynamics properties.
From dµi(T, p) = RTd ln ai one can develop,

x1dµ1 + x2dµ2

RT
= x1d(ln a1) + x2d(ln a2)

= x1d(ln x1) + x2d(ln x2) + x1d(ln γ1)
+ x2d(ln γ2)

= 0 (8)

or,

x1d(ln γ1) + x2d(ln γ2) = 0 (9)

since x1d(ln x1)+x2d(ln x2) = 0. For many components,∑
xid(ln γi) = 0 (10)

This form of the Gibbs-Duhem equation is useful for
testing the validity of various activity coefficient models.
Any proposed model must satisfy this equation.

3. Conditions of Equilibrium

For a three-component liquid-liquid equilibrium with
two phases, α and β, the equality of chemical potentials
leads to the equality of activities, aα

i = aβ
i , i = 1, 2, 3,

where ap
i = γp

i xp
i , with p indicating the phase, γ denoting

the activity coefficient, and x representing the mole
fraction. Number of particles conservation in each phase
establishes two more equations, xp

1 + xp
2 + xp

3 = 1, p =
α, β. Also, these particles will be either in phase α and
phase β, that is, P α + P β = 1, with P representing the
relative mole fraction of each phase p.

Two mass balances can also be taken into account,
xα

i P α + xβ
i P β = zi, i = 1, 2. Therefore, there will be

eight coupled equations,

γα
1 xα

1 = γβ
1 xβ

1

γα
2 xα

2 = γβ
2 xβ

2

γα
3 xα

3 = γβ
3 xβ

3

xα
1 P α + xβ

1 P β = z1

xα
2 P α + xβ

2 P β = z2

xα
1 + xα

2 + xα
3 = 1

xβ
1 + xβ

2 + xβ
3 = 1

P α + P β = 1

(11)

with eight unknows, xα
1 , xβ

1 , xα
2 , xβ

2 , xα
3 , xβ

3 , P α e P β .
The relation xα

3 P α+xβ
3 P β = z3 would be redundant and

does not need to be considered in the numerical solution.
The use of xα

3 = 1 − xα
1 − xα

2 , xβ
3 = 1 − xβ

1 − xβ
2 and

P β = 1 − P α further reduces the system of eight equa-
tions to a system of five equations with five unknowns,
implicitly satisfying the conservation of mass. With the
global compositions provided and a suitable activity
coefficient model, this system of non-linear equations can
be solved numerically.
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4. The Rachford-Rice Equation

Although the numerical solution of the system of equa-
tion (11) is possible, the problem can still be drasti-
cally simplified, being reduced to a problem with one
unknown. This is the essence of the Rachford-Rice
equation, to be discussed. Defining,

Ki = xα
i

xβ
i

= γβ
i

γα
i

(12)

one develops,

zi = P αxα
i + P βxβ

i = P αxα
i + (1 − P α)xβ

i

= P αxα
i + (1 − P α) xα

i

Ki
(13)

Multiplying by Ki and rearranging the terms,

Kizi = P αKix
α
i + (1 − P α)xα

i = (1 − P α + P αKi)xα
i

= [1 + P α(Ki − 1)]xα
i

(14)
Therefore,

xα
i = Kizi

1 + P α(Ki − 1)

xβ
i = zi

1 + P α(Ki − 1)

(15)

in which xβ
i = xα

i

Ki
was used for the second equation.

Number of particle conservation is expressed by,
F =

∑
i xα

i −
∑

i xβ
i = 0, or,

m∑
i=1

zi(Ki − 1)
1 + P α(Ki − 1) = 0 (16)

The relative mole fraction P α is the only unknown in this
equation. Result (16) is general and does not depend on
components number. Summation has to be carried out
for all species, as stated. The equation can also be set in
a more compact form, defining

m∑
i=1

zi

ci + P α
= 0 (17)

with ci = 1
Ki−1 . Expressions, xα

i = zi(ci+1)
ci+P α and xβ

i =
zici

ci+P α can also be used, if the constant ci is introduced.
Equation (17) is more atractive for numerical and
analytical analysis. Equation (17), a simple and elegant
relation, is the Rachford-Rice equation.

5. The NRTL Activity Coefficient Model

The quantity Ki will depend on the species compo-
sitions, or activity coefficient, and must be updated
for each new concentration value, if the Rachford-Rice
solution is to be found. It is therefore necessary that

a model of this quantity be established. Among the
possible models for activity coefficients, the one that
became most suitable, as it combined efficiency, simplic-
ity and provided analytical expressions for the case of
three components, was the NRTL (Non Random Two
Liquid) model [16]. The NRTL model, like the Wilson,
UNIQUAC, and UNIFAC models, belongs to the cate-
gory of local composition models, where the composition
around a molecule differs from the bulk composition [16].
Several other activity coefficient models are possible
and described in the literature, such as the Margules
model, the van Laar model and the Flory-Huggins [16]
model. However, as will be shown, the NRTL model was
sufficient for the purposes of the present work.

From measurements of the excess Gibbs energy, GE =
GE(T, p, N1, N2, . . . , Np), it is possible to establish the
activity coefficients, from which the thermodynamical
properties can be inferred. The relationship between
the excess Gibbs energy and the activity coefficient is
essential, as activity coefficients are deduced from Gibbs
energy models.

Activity coefficients for a binary system in the NRTL
model are given by [16],

ln γ1 = x2
2

[
τ21

(
G21

x1 + x2G21

)2
+ G12τ12

(x2 + x1G12)2

]

ln γ2 = x2
1

[
τ12

(
G12

x2 + x1G12

)2
+ G21τ21

(x1 + x2G21)2

]
(18)

in which G12, G21, τ12 e τ21 are constants. From GE

RT =
x1 ln γ1 + x2 ln γ2 one can deduce,

GE

x1x2RT
= τ21G21

x2G21

(x1 + x2G21)2 + x2
G12τ12

(x2 + x1G12)2

+ x1τ12( G12

x2 + x1G12
)2 + x1

G21τ21

(x1 + x2G21)2

(19)

Rearranging the terms,

GE

x1x2RT
= τ12G12

x2 + x1G12
+ τ21G21

x1 + x2G21
(20)

This is the Gibbs energy for the binary case, when con-
sidering the NRTL model. The equations (18) and (20)
are thermodynamically consistent, as they satisfy the
Gibbs-Duhem equation [12].

Despite involving a much more laborious algebra, the
excess Gibbs energy and activity coefficient relationship
are established in an analogous way for the case of many
components. The excess Gibbs energy, for a system of m
components adopting the NRTL model, is given by [16],

GE

RT
=

m∑
i=1

xi

∑m
j=1 τjiGjixj∑m

l=1 Glixl
(21)
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with,

ln γi =
∑m

j=1 τjiGjixj∑m
l=1 Glixl

+
m∑

j=1

xjGij∑m
l=1 Gljxl

·

(
τij −

m∑
i=1

xi

∑m
r=1 τrjGrjxr∑m

l=1 Gljxl

)
(22)

For three components, m = 3,

ln γi = τ1iG1ix1 + τ2iG2ix2 + τ3iG3ix3

G1ix1 + G2ix2 + G3ix3

+ x1Gi1

G11x1 + G21x2 + G31x3

·
(

τi1 − x1τ11G11 + x2τ21G21 + x3τ31G31

G11x1 + G21x2 + G31x3

)
+ x2Gi2

G12x1 + G22x2 + G32x3

·
(

τi2 − x1τ12G12 + x2τ22G22 + x3τ32G32

G12x1 + G22x2 + G32x3

)
+ x3Gi3

G13x1 + G23x2 + G33x3

·
(

τi3 − x1τ13G13 + x2τ23G23 + x3τ33G33

G13x1 + G23x2 + G33x3

)
,

i = 1, 2, 3. (23)

These relations are to be used in the Rachford-Rice equa-
tions numerical solution, with the constants calculated
from experimental data and taken from the literature
[10, 11]. For the data presented in Table 1, one has to use,

τij = Aij

RT
, τii = 0

Gij = e−τijαij , Gii = 1
(24)

in equation (23).

Table 1: Parameters for the water-ethanol-ethyl acetate system
in the NRTL model.

Aij/cal mol−1 αij

A12 = 576.3763 α12 = 0.2533
A21 = −27.8280 α21 = 0.2533
A13 = 2655.3 α13 = 0.3366
A31 = 805.5448 α31 = 0.3366
A23 = −670.9500 α23 = 0.2464
A32 = 990.8621 α32 = 0.2464

6. Solving the Rachford-Rice Equation

For a given global composition zi (i = 1, 2, 3), the
Rachford-Rice equation can be solved following the
steps:

(a) Initial guess: xα
i , xβ

i , P α

↓
(b) Calculate ln γi and Ki (or ci)

↓
(c) Solution of

∑m
i=1

zi

ci+P α = 0, for P α

↓
(d) New values: xα

i = Kizi

1+P α(Ki−1) , xβ
i = zi

1+P α(Ki−1)

↓
(e) Back to (b) until convergence

Step (b) is the most elaborate in solving the Rachford-
Rice equation, as it involves the calculation of the
activity coefficient and the constant Ki, but for each
iteration this value is fixed, as the compositions are pre-
defined. The process will be illustrated for each iteration,
that is, for a fixed Ki.

Suppose that in the considered iteration, the constants
are, c1 = −1.4403, c2 = 0.5640, c3 = 0.0243 and z1 =
0.6310, z2 = 0.0315, z3 = 0.3375. The solution of the
Rachford-Rice,

z1

c1 + P α
+ z2

c2 + P α
+ z3

c3 + P α
= 0 (25)

has to be found and can be carried out in different
ways, as a simple command in computational packages,
or by using the Newton-Raphson method, resulting in
the value of P α for the considered step. However, the
situation is even simpler. Rearranging equation (25),

(P α)2 + (c2z1 + c3z1 + c1z2 + c3z2 + c1z3 + c2z3)P α

+ (c2c3z1 + c1c3z2 + c1c2z3) = 0 (26)

giving the results P α = 0.501, xα = [0.2958, 0.0463,
0.6579] and xβ = [0.9677, 0.0167, 0.0156].

These new composition values are used again in
step (b) until the desired convergence. These mole
fraction will represent a point in the rectangular or
triangular ternary phase diagram representation.

7. Results and Discussion

The ternary system, water(1)-ethanol(2)-ethyl
acetate(3) will be used as a prototype model to
illustrate the usage of the Rachford-Rice equation.
The results in Table 1, at 70 ◦C and p = 1 atm,
have been optimized to reproduce data in reference
[11], using the previously published results [10] as
an initial guess. The set of mole fractions xα =
[0.2958, 0.0463, 0.6579], xβ = [0.9677, 0.0167, 0.0156],
are compatible with γα = [3.2984, 0.5816, 1.2200] and
γβ = [1.0083, 1.6128, 51.3854] for the NRTL equation,
an useful result for testing part of a possible computer
code.

As the system under analysis has 3 components, at a
fixed temperature and pressure, one has, by the Gibbs
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Figure 1: Rectangular diagram for the ternary system water(1)-
ethanol(2)-ethyl acetate(3), at 70 ◦C. Experimental data (cir-
cles), calculated data (asterisks) and global composition
(squares).

phase rule [16], F = 3 − P . For the two-phase region
(P = 2) there is one degree of freedom (F = 1), while
two degrees of freedom (F = 2) are possible for the
one-phase region (P = 1). Since P is at most two, two-
dimensional diagrams (phase diagrams) can be used to
represent the state of the system involving three compo-
nents. Two equivalent, with two independent variables,
are possible: one in which a third mole fraction is implicit
(rectangular phase diagram) and one in which it appears
explicitly (triangular phase diagram).

The rectangular and triangular phase diagrams for
the ternary system under consideration are presented
in Fig. 1 and 2, respectively. These diagrams show the
results for equilibrium compositions, according to the
algorithm explained in section 6 and for several global
compositions.

As observed, there is a very good agreement when
comparing calculated and experimental data with a
root mean square error of 0.0027. Since the solution

Figure 2: Triangular diagram for the ternary system water(1)-
ethanol(2)-ethyl acetate(3), at 70 ◦C. Experimental data (cir-
cles), calculated data (asterisks) and global composition
(squares).

can converge to the trivial one (phases with the same
composition) or to solutions that represent local minima
of the Gibbs energy surface [17] it is important to have a
reasonable initial condition. The same initial approxima-
tions xα = [0.1, 0.4, 0.5] and xβ = [0.950, 0.045, 0.005]
proved to be satisfactory for all calculated results. It is
important to mention that similar results were obtained
by solving the eight-dimensional system, equation (11),
indicating the overall simplicity of the Rachford-Rice
equation. However, with the Rachford-Rice formulation
one has to solve a problem with one independent vari-
able, as in the equation (26).

A necessary condition to guarantee thermodynamic
equilibrium is to achieve equality of activities (isoactiv-
ity), that is, aα

i = aβ
i , i = 1, 2, 3. The isoactivity of the

results was evaluated, using the ratio aα
i /aβ

i , whose ideal
result is unity. For the calculated results, this quantity

Table 2: Calculated (cal) and experimental (exp) [11] phase compositions for the ternary system water(1)-ethanol(2)-ethyl
acetate(3), at 70 ◦C and p = 1 atm.

Tie line z1 z2 z3 x1(exp) x2(exp) x3(exp) x1(cal) x2(cal) x3(cal)
1 0.6140 0.0120 0.3740 0.2520 0.0150 0.7330 0.2511 0.0177 0.7312

0.9760 0.0090 0.0150 0.9814 0.0063 0.0123
2 0.6310 0.0315 0.3375 0.2980 0.0440 0.6580 0.2958 0.0463 0.6579

0.9640 0.0190 0.0170 0.9677 0.0167 0.0156
3 0.6695 0.0660 0.2645 0.3990 0.0940 0.5070 0.3967 0.0950 0.5083

0.9400 0.0380 0.0220 0.9385 0.0374 0.0241
4 0.6910 0.0865 0.2225 0.4650 0.1200 0.4150 0.4713 0.1198 0.4089

0.9170 0.0530 0.0300 0.9151 0.0526 0.0323
5 0.7110 0.0980 0.1910 0.5230 0.1330 0.3440 0.5251 0.1319 0.3430

0.8990 0.0630 0.0380 0.8955 0.0643 0.0401
6 0.7195 0.1025 0.1780 0.5550 0.1350 0.3100 0.5495 0.1358 0.3147

0.8840 0.0700 0.0460 0.8856 0.0700 0.0444
7 0.7274 0.1091 0.1635 — — — 0.5852 0.1396 0.2753

— — — 0.8695 0.0786 0.0518
8 0.7424 0.1182 0.1394 — — — 0.6515 0.1403 0.2081

— — — 0.8333 0.0961 0.0706
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was shown to have a maximum error of 1.73 × 10−6,
indicating not only the calculation accuracy but also the
condition of equilibrium condition.

The results calculated in the present work and the
experimental data [11] are presented in Table 2. The
success in recovering these tie lines shows, again, the
efficiency of the algorithm, even close to the critical
point.

8. Conclusions

The Rachford-Rice method was presented for a three-
component prototype system. The method is easy to
implement, involving the solution of a second degree
polynomial equation. The final solution is obtained
iteractively.

The main advantage of the present method is its sim-
plicity. In some systems, as in liquid-vapor equilibrium,
the constant Ki does not depend on composition and
the Rachford-Rice can be used to predict equilibrium
composition with only one iteraction, independently of
the number of components.

The most involved part of the method consists of
establishing a suitable model for the activity coefficient.
After this step, the computer code contains just over
five commands. Using the NRTL model for the activity
coefficient, the solution to the problem was established
and the convergence obtained was within the experimen-
tal error, demonstrating the robustness of the algorithm.
The Rachford-Rice equation, as presented here, is very
simple to implement and suitable to teach ternary liquid-
liquid equilibrium in undergraduated courses.
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