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ABSTRACT. Aedes aegypti is the main vector of multiple diseases, such as dengue, yellow fever, Zika,
and chikungunya. Diseases associated with mosquitoes have been growing in recent years, with more than
one-third of the world population at risk. Control techniques have been studied to prevent the spread of
the Aedes aegypti, such that new formula and how to use adulticides and larvicides, among others. This
paper proposes a novel approach in the field of partial differential equations and optimization. We consider
a two-dimensional diffusion-reaction model that describes the interaction between aquatic and adult female
stages spreading across a domain with parameters dependent on rainfall and temperature. We also formulate
a mono-objective and multiobjective optimization problem to minimize the Aedes aegypti populations and
the control, considering the application of adulticides and larvicides, using actual data from the city of
Lavras/Brazil. The operator splitting technique is used to solve the diffusion-reaction system, coupling
finite difference and the fourth-order Runge-Kutta method and optimal solutions were searched by using
the Real-Biased Genetic Algorithm and Non-dominated Sorting Genetic Algorithm -II. Numerical results
show significant reduction of the Aedes aegypti population.
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1 INTRODUCTION

Recent research on the Aedes aegypti1 population genetics and its relationship with epidemiolog-
ical records of occurrences of diseases transmitted by this species allowed reconstruction of its
history in the last 261 years [24]. The problem of how and when this mosquito came to occupy its
distribution is summarized by Powell et al. [28]. There is no specific treatment for most diseases
caused by Ae. aegypti [24]. Several advances in science aim at approaches to control vector-borne
diseases, such as biological control with adulticides, larvicides, curtains treated with insecticides
and traps [29].

Adequate mathematical modeling is a crucial factor in understanding the dynamics of the
mosquito population and devising strategies, using appropriate control techniques to reduce this
population. Among such studies can be highlighted the proposal of Dias et al. [9], that aim to
control the vector in the spread of dengue fever, using an approach of multiobjective optimiza-
tion, whose intention was to minimize the social and economic costs for the use of chemical
(insecticides) and biological (insertion of males sterilized by radiation) control. Florentino et
al. [11] developed a study using multiobjective optimization techniques to help solve problems
involving Ae. aegypti control. The population dynamics of the mosquito was studied in order to
understand the epidemic phenomenon and suggest strategies of multiobjective programming for
mosquito control.

Diffusion-reaction 2equations arise naturally in modeling chemical reactions, engineering, phys-
ical phenomena and are widely used in biological systems to describe iteration and diffusion
between species [15, 22]. In 2018, Zhu et al. [47] presented a mathematical diffusion-reaction
model with a free boundary to describe dengue transmission. Furthermore, the authors obtained
the basic reproduction number, determining the persistence and eradication of the disease. That
same year, Yamashita et al. [40] presented a diffusion-reaction-advection model to describe the
mosquito Ae. aegypti population dynamics in different cities.

In 2005, Takahashi et al. [31] presented a model that shows the dynamics of Ae. aegypti disper-
sion intending to highlight procedures to minimize the dengue vector. In 2019, Carvalho et al. [5]
proposed a mathematical model that evaluates control strategies, which aim to eliminate the Ae.
aegypti mosquito, as well as proposals for the vaccination campaign along with mechanical and
chemical control, carried out with insecticides and larvicides. In 2019, Multerer et al. [21] used
partial differential equations to describe Ae. aegypti mosquito population dynamics to release
sterile males. In addition, they applied optimal control theory to identify the release strategy that
most effectively eliminates mosquitoes.

In 2019, Silva et al. [30], presented an entomological model of two populations that describes the
dynamics of Ae. aegypti in the aquatic and adult phases of females with parameters dependent on

1A taxonomic rule in Biology determines that abbreviation Ae. aegypti for the specie name Aedes aegypti must be used,
except for the first appearance, tables, figures, and abstract.

2Reaction-diffusion equations arise naturally in systems consisting of many interacting components, and are widely used
to describe pattern-formation phenomena in variety of biological, chemical and physical systems [16].

Trends Comput. Appl. Math., 24, N. 4 (2023)
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precipitation. They also showed the sensitivity analysis and the local stability of the model and
used mono-objective optimization to control Ae. aegypti.

In 2022, Vasconcelos [35] they described a mathematical model to represent the population of
Aedes life stages with parameters dependent on temperature and precipitation. Real data from
female mosquitoes captured by traps in the city of Lavras (Brazil) was considered to calibrate the
model parameters. In addition, an optimal control problem was formulated to evaluate the costs
of control actions with adulticides and larvicides using Pontryagin’s Maximum Principle.

This paper propose a diffusion-reaction model for the dynamic and spreading of Ae. aegypti, and
an effective control strategy to reduce its density, avoiding the occurrence of dengue and other
epidemics. The dynamic of mosquitoes considers the aquatic phase and adult females. The main
reason for the dispersal of Ae. aegypti mosquitoes is the search for a source of human blood
or places for oviposition. Furthermore, the present work develops an optimization scheme that
minimizes both the population of Ae. aegypti in time, space, and financial costs. Regarding the
financial costs, the control should be applied as few as possible to reduce the costs involved
in the purchase of adulticides and larvicides and the social costs such as the number of female
mosquitoes. The resulting system is solved numerically using the operator splitting technique,
which is well-known in the resolution of issues arising in large systems of partial differential
equations, as well as to problems involving chemical reactions and dispersal of the mosquito [13,
19, 25, 39].

Given its easy implementation, we used the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and Real-Biased Genetic Algorithm (RBGA) to find solutions to the multiobjective
and mono-objective optimization problems [8, 32]. For comparison purposes, numerical simu-
lations explored two different scenarios for two months of the summer season:considering the
dispersion starting with one point of the domain, the simulation considering with and without
control. Results showed the effectiveness of control to reduce the Ae. aegypti population both in
time and space.

This work presents the following novelty: a mono-objective and multiobjective optimization ap-
proach to minimize the mosquito population and the control, considered as the application of
adulticides and larvicides restricted to the two-dimensional diffusion-reaction model. Regarding
the literature, the main differences with the works of [30, 35] are: i) a numerical study of the
proposed two-dimensional mathematical diffusion-reaction model that describes the interaction
between aquatic and adult Ae. aegypti female stages; ii) a mono-objective and multiobjective op-
timization problem is used. Concerning the work of [30], the temperature is inserted in addition
to rainfall.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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2 MATHEMATICAL MODEL

The proposed mathematical model considers that the life cycle of mosquitoes comprises two
phases: aquatic (immature) phase consisting of the eggs, larvae, and pupae, and adult phase
consisting of the adult females mosquitoes, as can be seen in Figure 1. The female mosquitoes
lay eggs in containers of standing water [20, 38].

Figure 1: The life cycle of Aedes mosquitoes [3].

To describe the space-time dynamics of the mosquitoes it will be proposed a two-dimensional
diffusion-reaction system, where the diffusion follows the Fick’s Classical Law. The variable
A(x,y, t) represents the immature mosquitoes population at time t occupying the reference posi-
tion (x,y) and F(x,y, t) represents the adult females population at time t occupying the reference
position (x,y). These two populations are in a region Ω ≡ [0,L]× [0,L] from space, 0 and L are
the initial and final positions, respectively, and (x,y) ∈ Ω. These dynamics occur during the time
interval I = [0,T ], where 0 and T are the initial and final time, respectively, and t ∈ I.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Define {ε,φ ,C,γ,α,µA,µF ,uA,uF ,κ1,κ2,L,T} ∈R+. The problem is to find A(x,y, t) ∈R+ and
F(x,y, t) ∈ R+ for all x ∈ Ω and t ∈ I satisfying

∂A(x,y, t)
∂ t

=κ1

(
∂ 2A
∂x2 +

∂ 2A
∂y2

)
+ εφ(d)

(
1− A

C(r)

)
F − (α(d)+µA(r,d)+uA)A,

∂F(x,y, t)
∂ t

=κ2

(
∂ 2F
∂x2 +

∂ 2F
∂y2

)
+ γα(d)A− (µF(d)+uF)F,

(2.1)

with Neumann boundary conditions

Ax(0,0, t) = 0, Ax(L,L, t) = 0, t > 0.

Ay(0,0, t) = 0, Ay(L,L, t) = 0, t > 0.

Fx(0,0, t) = 0, Fx(L,L, t) = 0, t > 0.

Fy(0,0, t) = 0, Fy(L,L, t) = 0, t > 0.

and initial conditions:

A(x,y,0) = g1(x,y),

F(x,y,0) = g2(x,y).

Functions g1(x,y) and g2(x,y) will be defined in section 6. In this model, described by Eq.(2.1),
each population, A and F , spread out in the domain according to their respective diffusion coef-
ficients κ1 and κ2. Thus, here the variable parameters are based on the temperature d and precip-
itation r expressions that favor vector growth and development in time and space, as shown in
the section below. The immature forms are generated from the fraction ε of viable eggs from the
daily oviposition φ(d) that adult female mosquitoes F deposit in potential breeding. The density
of immature forms is regulated by the carrying capacity C(r), which is limited by environmental
conditions, space, and availability of organic matter found in water for food. Immature forms
evolve to adult mosquitoes at a rate α(d), resulting in γα(d) females and (1−γ)α(d) males. For
our proposal, only females are considered, so that female mosquitoes are vector-borne diseases.
The death rate of immature (A) and adult female mosquitoes F are given by µA(r,d), and µF(d),
respectively. The control functions uA and uF represent additional death for immature and adult
female mosquitoes, respectively.

3 RAINFALL AND TEMPERATURE DATA

The study area includes the city of Lavras in the state of Minas Gerais, Brazil. In this region, the
climate is subtropical, which is excellent for Ae. aegypti proliferation [18]. Figure 2 shows the
location of the municipality of Lavras.

Total annual precipitation is about 1237 mm, and temperatures generally range between 11 °C
in winter and 29 °C in summer. Daily data for 15 years of rainfall and temperature recorded in

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Figure 2: Location of Lavras [6].

Lavras were obtained from the Brazilian National Institute of Meteorology (INMET). The data
were then converted into a representative year formed by the average of these 15 years, as Figure
3 shows. Figure 4 shows that the average is a good measure of the central tendency for precip-
itation and temperature. We noticed similar behavior in the city’s temperature and precipitation
data, in the sense that the average of the 15-year period is representative of a general context for
these data. It should be better to consider the average of the last few years than to simply use the
data from the previous year, for example.

There is no controversy regarding the importance of temperature and rainfall in the development
of Ae. aegypti, based on studies [33,34]. In fact, the entomological parameters in several models
are assumed to be considered as dependent on temperature and rainfall [7,26,35,45]. Thus, here
the variable parameters are based on temperature d and precipitation r expressions that favor
vector growth and development in time and space, as shown below.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Figure 3: Average rainfall and temperature - Lavras/MG.
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Figure 4: Average precipitation and temperature - Lavras/MG.

1. Carrying capacity adapted [27, 30]

C(r) = minC+

(
maxC−minC
maxr−minr

)
· (r−minr).

2. Oviposition rate [41]

φ(d) =−5.400+1.800d −2.124 ·10−1d2 +1.015 ·10−2d3 −1.515 ·10−4d4.

3. Development rate of immature to adult [41]

α(d) = 1.310 ·10−1 −5.723 ·10−2d +1.164 ·10−2d2 −1.341 ·10−3d3

+8.723 ·10−5d4 −3.017 ·10−6d5 +5.153 ·10−8d6 −3.420 ·10−10d7.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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4. Natural death rate of female mosquitoes [41]

µF(d) = 8.692 ·10−1 −1.590 ·10−1d +1.116 ·10−2d2 −3.408 ·10−4d3

+3.809 ·10−6d4.

5. Natural death rate of eggs, larvae and pupae [41]

µA(d) = 2.130−3.797 ·10−1d +2.457 ·10−2d2 −6.778 ·10−4d3

+6.794 ·10−6d4. (3.1)

µA(r) = min µA +
(

max µA−min µA
maxrainfall−minrainfall

)
· (rainfall−minrainfall). (3.2)

The mortality in the aquatic phase, µA, is influenced by temperature and rainfall [7, 44]. The
dependence can be considered assuming a function, so that µA(r,d) = a0 +a1µA(r)+b1µA(d)+
O(r2,d2). The linear part is considered to reinforce the association and fulfill the values of the
literature. Therefore, µA(r,d) =

µA(d)
2 + µA(r)

2 is defined by the average values obtained in the Eq.
3.1 and 3.2.

4 NUMERICAL FORMULATION

Equation (2.1) is composed of two naturally distinct operators: diffusion and reaction. Its numer-
ical solution can be obtained from the sequential operator splitting technique [25] [13], in which
each one of the processes is independently solved, and these individual results are coupled in
each time step of the method. It is interesting because problems of different mathematical na-
ture, in this case, diffusion and reaction systems, can be solved separately with proper numerical
techniques.

The algorithm to solve the system (2.1) was based on the development presented by Wyse et
al. [39] and Lima et al. [19]. In this methodology it is necessary to decompose the system (2.1)
into two problems and proceed with the sequential operator splitting: a system of partial dif-
ferential equations, more specifically the diffusion system, and ordinary differential equations
associated with the reactive term. The diffusion problem is solved using the finite difference
method, and the reaction problem is solved using the fourth-order Runge-Kutta method.

Introducing the temporal discretization I = [0,T ] =
⋃N

n=0 In, with In = [tn, tn+1] being a I partition,
and N = T/∆t being the number of I partitions, such that ∆t = tn+1 − tn is a uniform time step,
we proceed with the algorithm:

Step 1: For t = 0, initialize the variables A(x,y,0) = g1(x,y), and F(x,y,0) = g2(x,y).

Step 2: For some fixed n ⩾ 0, given the initial conditions A(x,y, tn), and F(x,y, tn) and defining
Ă(tn) = A(x,y, tn), and F̆(tn) = F(x,y, tn), calculate Ã(x,y, tn), and F̃(x,y, tn) at time tn+1 through
the following problem:

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Problem A: Find Ã(x,y, t), and F̃(x,y, t), defined in (x,y) ∈ Ω, and t ∈ In, satisfying the system:
∂ Ã(x,y, t)

∂ t
=κ1

(
∂ 2Ã(x,y, t)

∂x2 +
∂ 2Ã(x,y, t)

∂y2

)
,

∂ F̃(x,y, t)
∂ t

=κ2

(
∂ 2F̃(x,y, t)

∂x2 +
∂ 2F̃(x,y, t)

∂y2

)
,

with Neumann boundary conditions

Ãx(0,0, tn) = Ãx(L,L, tn) = 0,

F̃x(0,0, tn) = F̃x(L,L, tn) = 0,

and initial conditions

Ã(x,y, tn) = Ă(tn),

F̃(x,y, tn) = F̆(tn).

Step 3: In the same time interval In, we use the solution of Problem A as the initial condition to
obtain the solution of the system of nonlinear ordinary differential equations associated with the
reaction term of (2.1), which is given by the following problem:

Problem B: Find A(t) and F(t), defined in t ∈ In, satisfying the system:
dA
dt

=εφ

(
1− A

C

)
F − (α +µA +uA)A,

dF
dt

=γαA− (µF +uF)F,

with initial conditions

A(tn) = Ã(x,y, tn+1),

F(tn) = F̃(x,y, tn+1),

where Ã(x,y, tn+1) and F̃(x,y, tn+1) are the solutions obtained from Problem A.

Step 4: The solution for Problem B is the approximate solution of the model at time tn+1 ∈ In ⊂ I.
If tn+1 < T , increment n, return to Step 2 and repeat the process until equality occurs.

The solution for Problem A was obtained using the explicit finite difference method [17]. To
find this numerical solution with finite difference methods, we first need to define a set of grid
points in the domain Ω ≡ [0,L]× [0,L] choosing a uniform state step size ∆x = L/(M1 + 1)
and ∆y = L/(M2 + 1), where M1 and M2 represents the number of mesh nodes (M1 and M2 is
an integer) and a time step size ∆t = tn+1 − tn, which was previously defined at the beginning
of the algorithm. We introduce an explicit finite difference method for solving the following
two-dimensional time-dependent diffusion equation described in Problem 1, with the following
approximation:

Ai, j,n+1 = Ai, j,n + k1
(
Ai−1, j,n −2Ai, j,n +Ai+1, j,n +Ai, j−1,n −2Ai, j,n +Ai, j+1,n

)
, (4.1)

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Fi, j,n+1 = Fi, j,n + k2
(
Fi−1, j,n −2Fi, j,n +Fi+1, j,n +Fi, j−1,n −2Fi, j,n +Fi, j+1,n

)
, (4.2)

in which Ai, j,n and Fi, j,n are the values of populations A and F at a grid point (i, j,n) and kι =
κι ∆t
h2

with h = ∆x = ∆y and ι = 1,2. The difference equations (4.1) and (4.2), i = 1, · · · ,M(1,2)−1 and
j = 1, · · · ,M(1,2)− 1, together with the initial and boundary conditions, defined in Problem A,
were solved using the Gauss-Seidel algorithm.

Concerning Problem B given by the system of ordinary differential equations, we use the standard
fourth-order Runge-Kutta method [17].

5 MULTIOBJECTIVE OPTIMIZATION

In this section, we will present the mono-objective and multiobjective optimization problems.

5.1 Mono-objective optimization

This section deals with an optimization design to control Ae. aegypti mosquitoes, considering
both immature and adult females to be controlled. In the first moment, we will address the mono-
objective optimization problem. The goal is to minimize costs with larvicides and adulticides
and reduce social costs by combating Ae. aegypti females. Thus, mono-objective optimization
techniques are appropriate for this problem.

The decision variables are the control uA and uF , which correspond to the percentage control rates
applied in the immature and adult female phases during the time interval tA and tF , respectively.
The objective function J is a quadratic function that depends on the control and also on the
number of mosquitoes, constrained to the model (2.1), and constrained to appropriate control
according to their physical representation.

Consider tmax =max{tA1 , tA2 , tF1} as a month during 60 days of the summer. Thus, by the equation
of a line, the descending control, in which the residual effect of the control decreased at each
instant of time, is uA = − uA

τ
· t + uA

τ
· (t0 + τ), in which t0 is the first day of control, chosen by

the optimization algorithm, and τ is the number of days of the control application. In parallel,
the way to apply the adulticides, uF , at time tF follows the step size control, in which there is no
residual effect [36].

Therefore, control actions in practice must occur in places with a high rate of Ae. aegypti infesta-
tion. Consider two larvicides applications in the aquatic phase of the vector using a maximum of
50% in each application. The use of adulticide in the adult phase of females is used by observing
the region of the city with the highest rate of Ae. aegypti infestation, which may reach 100%
control.

These intervals were calculated based on the basic offspring number Q0 = γα

(α+µA+uA)
εφ

(µF+uF )

[35]. The interpretation of Q0 in practice is that if Q0 > 1, female mosquitoes manage to es-
tablish their population in a particular region of the domain, this region is classified as infested
by the vector. If 0 < Q0 < 1, female mosquitoes cannot establish their population. Therefore,

Trends Comput. Appl. Math., 24, N. 4 (2023)
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the region is considered free of vector infestation. Figure 5 shows the regions where we express
Q0(uA,uF) < 1 and Q0(uA,uF) > 1. With this, we can obtain the upper bounds to apply control
in the aquatic and adult phases of Ae. aegypti.
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Figure 5: The region in blue color indicates the ordered pair (uA,uF), where Q0(uA,uF) < 1,
while the region in red color indicates the ordered pair (uA,uF), where Q0(uA,uF)> 1.

Formally, the optimization problems are defined as follows:

min
uA1

,uA2
,uF1

,tA1
,tA2

,tF1
J =C1

∫∫∫
Ω×I

uAdxdydt +C2

∫∫∫
Ω×I

uF dxdydt +C3

∫∫∫
Ω×I

Fdxdydt, (5.1)

subject to :



∂A(x,y,t)
∂ t = κ1

(
∂2A
∂x2 + ∂2A

∂y2

)
+ εφ(d)

(
1− A

C(r)

)
F − (α(d)+µA(r,d)+uA)A,

∂F(x,y,t)
∂ t = κ2

(
∂2A
∂x2 + ∂2A

∂y2

)
+ γα(d)A− (µF (d)+uF )F,

Ax(0,0, t) = 0, Ax(L,L, t) = 0, t > 0,

Ay(0,0, t) = 0, Ay(L,L, t) = 0, t > 0,

Fx(0,0, t) = 0, Fx(L,L, t) = 0, t > 0,

Fy(0,0, t) = 0, Fy(L,L, t) = 0, t > 0,

A(x,y,0) = g1(x,y),

F(x,y,0) = g2(x,y)

0 ⩽ uA1
⩽ 0.50,

0 ⩽ uA2
⩽ 0.50,

0 ⩽ uF ⩽ 0.21,

2 ⩽ tA1
⩽ 20,

30 ⩽ tA2
⩽ 50,

2 ⩽ tF1
⩽ 50,

(5.2)
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Ax(0,0, t) = 0, Ax(L,L, t) = 0, t > 0.

Ay(0,0, t) = 0, Ay(L,L, t) = 0, t > 0.

Fx(0,0, t) = 0, Fx(L,L, t) = 0, t > 0.

Fy(0,0, t) = 0, Fy(L,L, t) = 0, t > 0.

and initial conditions:

A(x,y,0) = g1(x,y),

F(x,y,0) = g2(x,y).

where C1 is the relative cost to control the immature stage, C2 is the relative cost to control
adult females, C3 is the social cost related to the number of female mosquitoes (hospital cost,
medicines cost, personal cost), respectively. The parameters uA1 and uA2 are the intensity of
larvicides applied on the immature stage until the time tA1 , tA2 . Finally, uF1 is the intensity of
adulticides applied on the adult female stage until the time tF1 .

Therefore, we first numerically solve the dynamical system (2.1) (as explained in previous
sections). From there, the optimization algorithm generates values for the decision variables
uA1 ,uA2 ,uF , tA1 , tA2 , tF and then uses the solution to evaluate the objective function of (5.1).
The optimal values of the decision variables were obtained by a Real-Biased Genetic Algorithm
(RBGA). For RBGA, the population size and the number of generations were considered 40. The
individuals are represented by arrays in the computational simulations, which are decoded by the
algorithm, producing a fitness value for each. The biased operator produces new solutions close
to the best parent, with a particular perturbation and distance between the parents. The mutation
causes small perturbations in the fitness values of some individuals, given a certain probability,
to generate diversity in the population. The selection operator consists of randomly selecting
individuals from the population, removing the ones with the lower fitness value [14, 32, 37].

5.2 Multiobjective optimization

From the mono-objective problem approach, it is pertinent to show the multiobjective optimiza-
tion problem, showing the public health manager several possibilities for decision-making. The
multiobjective optimization problem presents conflicting objectives: to reduce social costs with
the control of Ae. aegypti females; minimize costs with larvicides and adulticides. We consider
the same decision variables as in mono-objective problem uA1 ,uA2 ,uF , tA1 , tA2 , tF , as well as the
control intervals, which are shown in Figure 5.

The multiobjective optimization problem is then stated in the following way: to minimize the
adult female population in time and space, also considering the social costs and the control costs
in immature and adult phases. Formally, the optimization problem is defined as follows:

min
uA,uF ,tA ,tF

J1 =C1
∫∫∫

Ω×I uAdxdydt +C2
∫∫∫

Ω×I uF dxdydt

min
uA,uF ,tA ,tF

J2 =C3
∫∫∫

Ω×I Fdxdydt
(5.3)
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subject to :



∂A(x,y,t)
∂ t = κ1

(
∂ 2A
∂x2 + ∂ 2A

∂y2

)
+ εφ(d)

(
1− A

C(r)

)
F − (α(d)+µA(r,d)+uA)A,

∂F(x,y,t)
∂ t = κ2

(
∂ 2A
∂x2 + ∂ 2A

∂y2

)
+ γα(d)A− (µF (d)+uF )F,

Ax(0,0, t) = 0, Ax(L,L, t) = 0, t > 0,

Ay(0,0, t) = 0, Ay(L,L, t) = 0, t > 0,

Fx(0,0, t) = 0, Fx(L,L, t) = 0, t > 0,

Fy(0,0, t) = 0, Fy(L,L, t) = 0, t > 0,

A(x,y,0) = g1(x,y),

F(x,y,0) = g2(x,y)

0 ⩽ uA1 ⩽ 0.50,

0 ⩽ uA2 ⩽ 0.50,

0 ⩽ uF ⩽ 0.21,

2 ⩽ tA1 ⩽ 20,

30 ⩽ tA2 ⩽ 50,

2 ⩽ tF1 ⩽ 50,

(5.4)

When dealing with a dynamic-population-based approach, NSGA-II is suitable for solving sim-
ilar problems of multiobjective optimization [9, 11]. In multiobjective optimization problems,
we are searching for a solution that is the best concerning all the objectives considered since
the objectives are usually conflicting. The result of a multiobjective optimization algorithm is a
set of solutions organized in the Pareto front. The NSGA-II algorithm has a fast procedure to
classify the best individuals of this front, which are called non-dominated points, resulting in a
combined non-dominated front. Furthermore, the NSGA-II has: i) elitism preservation approach
to guarantee the best possible solutions to be present in the non-dominated front; ii) crowding
distance comparison operator, for diversity preservation of the solutions [8].

Moreover, none of these solutions is better than any other. So, the advantage of the multiobjec-
tive optimization approach is that it corresponds to the variation of mono-objective scenarios. It
means that the Pareto front shows several available solutions for the decision-maker. When ana-
lyzing such solutions, the decision-maker can prioritize the criterion that he considers the most
important according to the objective functions.
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6 RESULTS AND DISCUSSION

This section reports the results obtained when we apply computational techniques to solve nu-
merically the proposed diffusion-reaction model coupled with multiobjective and mono-objecive
optimization. We implemented the methods using the programming language C version C90
and compiled them with GCC 4.9.2. The simulations were performed on a computer with an
Intel® Core™ i7-8550 processor, with 8GB RAM, and Windows 10 Home Single Language

64bit operating system.

All numerical experiments consider that mosquitoes occupy a spatial region Ω = [0,20]×
[0,20]m, which is equivalent to an area of 400 square meters in a neighborhood, during the
time interval I = [0,60] days, referring to a period in the summer season. In practice, this re-
gion has two residences within one block. This band is large enough that mosquitoes are not
affected by the boundary conditions imposed by the mathematical model. This work performed
an extensive search of the model (2.1) parameters’ values: ε , φ , C, γ , α , µA, µF , to better fit the
obtained results to the real-world conditions regarding the Ae. aegypti dynamics. Table 1 shows
these values.

Table 1: Entomological parameters for the Aedes aegypti model (2.1).

Parameters Description Values Unity Reference
ε Fraction of eggs hatching 0.5 day−1 [1]
φ Oviposition rate 1.060327−8.294997 day−1 [42]
C Carrying capacity 50−200 dimensionless [45]
γ Fraction of female mosquitoes 0.5 day−1 [1, 44]
α Development rate of immature to adult 0.02615−0.11612 day−1 [42]
µA Natural death rate of eggs, larvae and

pupae
0.01397−0.06001 day−1 [42]

µF Natural death rate of female mosquitoes 0.028773−0.035859 day−1 [43]

The aquatic phase of Ae. aegypti can be transported in a region as dispersion (flower pots,
domestic animal feeding dishes, and other unattended wet or rain-filled containers) provide
breeding sites for mosquitoes. Therefore, the diffusion coefficient assumed as κ1 = 3.1× 10−9

km2/day [10] [2].

Additionally, we consider that the females of Ae. aegypti are dispersed for 100 meters per day
[12]. Therefore, the diffusion coefficient can be obtained from κ2 =< x >2 /qit, with < x >2 the
mean square displacement and qi a numerical constant related to dimensionality (qi = 2,4, or 6,
for 1,2, or 3-dimensional diffusion, respectively), resulting in κ2 = 3.1×10−6 km2/day [2] [23].

The additional death of immature and adult mosquitoes uA and uF are obtained via optimization,
as well as the control duration times tA and tF . The relative costs are considered as C1 = 10,
C2 = 100 [4], and C3 = 0.01 [30, 36]. The optimization procedure used the Real-Biased Ge-
netic Algorithm and Non-dominated Sorting Genetic Algorithm II, considering the parameters
in Tables 2 and 3, respectively.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Table 2: Parameters of the RBGA.

Parameters Values Reference
Mutation rate 5% [32] [36]

Recombination rate 90% [32] [36]
Biased crossover probability 30% [32] [36]

Simulations 30 [32] [36]

Table 3: Parameters of the NSGA-II.

Parameters Values Reference
Mutation rate 5% [8]

Recombination rate 90% [8]
Simulations 30 [36]

Mono-objective optimization results

For comparison purposes, in the numerical simulations, we use two scenarios in which we
consider an arbitrary urban 20 meters of a neighborhood composed of houses and a street:

• Scenario 1 shows the diffusion-reaction with a mosquito focus and without control in 20
meters;

• Scenario 2 shows the diffusion-reaction model with only one mosquito focus. In this case,
the descending control is considered for the immature phase with two control applications
and the step size control for the adult phase. The reason for considering this scenario is
that, in practice, instead of the public health manager planning actions to carry out the
control in the considered region, the control will only be carried out in places where there
is a large infestation of Ae. aegypti.

In partial differential equation problems, it is common to use trigonometric functions as initial
conditions [46, 47]. Scenarios 1 and 2 consider the same amount of aquatic and adult female
stages as an initial condition (6.1). This initial condition is chosen since it is considered that
the breeding sites are distributed in a region of the study area. The same parameters are consid-
ered for x and y. Furthermore, a region in the middle of the domain is considered and the effect
of mosquito dispersal from a neighboring area is analyzed. The following initial condition de-
scribes this initial distribution of aquatic forms and adult females. Eq. (6.1) shows these initial
conditions. 

A(x,y,0) = 10
(

sin
(

π

(
x−1

19−1

)(
y−1

19−1

)))100

, if 1 ≤ (x,y)≤ 19,

F(x,y,0) = 10
(

sin
(

π

(
x−1

19−1

)(
y−1

19−1

)))100

, if 1 ≤ (x,y)≤ 19,

A(x,y,0) = F(x,y,0) = 0, if 0 ⩽ (x,y)< 1 or 19 < (x,y)⩽ 20.

(6.1)
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Scenario 1

The population concentrations for both mosquito phases (aquatic and winged females) are shown
for the same time in Figure 6 (a) and (b) and when t = 0. Note that in the study region, the amount
of Ae. aegypti varies from 0 to 10 depending on the sinusoid. In practice, one can consider
a residence in the center of the study region. Scenario 1 considers the numerical simulation of
model (2.1) without additional control, with initial conditions (6.1)over a two-dimensional spatial
domain Ω = [0,20]× [0,20] meters and 60 days in the summer. Figure 7 shows the distribution
in time and two-dimensional population space in the aquatic stage and mosquitoes in the female
adult phase. In Figure 7, it can be seen the growth in the habitat of the adult female and aquatic
populations over time, according to temperature and rainfall data in the city.

(a) Aquatic stage (b) Winged females

Figure 6: Mosquitoes initial population dispersion for Scenario 1.

(a) Aquatic stage (b) Adult females

Figure 7: Mosquitoes population dispersion for Scenario 1.
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Scenario 2

We are considering the same initial condition (6.1) for this numerical experiment to better com-
pare with the previous Scenario 1, but taking into account significant constant control parameters.
Scenario 2 considers the decrease in control in the aquatic phase during two 10-day applications
and one control application in the adult phase of females during one day. In practice, this idea
is to control the spreading of Ae. aegypti in both aquatic and female adult phases. For this, we
obtained uA1 +uA2 = 93% and uF = 3%, resulting from the optimization problem, and consider-
ing tA1 + tA2 = 20 days, and tF = 1 day almost nine epidemiological weeks during the summer
season. These results show that the well-executed control in the aquatic phase prevents the de-
velopment of eggs in new adult females, collaborating to reduce control in the adult phase. Table
4 summarizes the values obtained for the mono-objective optimization problem.

Table 4: Optimal control variables for Scenario 2.

Parameters uA1 tA1 uA2 tA2 uF tF1 J Ef.
Values 47% 7 46% 33 3% 31 2906 13%

Note that there is a significant decrease in the number of mosquitoes during the simulation, as
shown in Figure 8, and ratified by the value of the objective function described in Table 4. When
the mono-objective optimization algorithm is applied in the model (2.1), where the value of the
objective function is J = 2906, and we have an efficiency of 13% in the control of the Ae. aegypti
mosquito in 60 days, with a control application for around 20 days for aquatic phase mosquitoes
and 1 day for adult females.

(a) Aquatic stage (b) Adult females

Figure 8: Mosquitoes population dispersion for Scenario 2.

Figure 9 shows the convergence of the optimal functional Eq. (5.1) value using the RBGA algo-
rithm for Scenario 2. It can be seen when analyzing Figure 9 that as the number of generations
increased, there was an improvement in the value of the objective function. There was also a
reduction in its variability, causing the size of the boxplot box to decrease. The quality of the
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optimal values is satisfactory. The best value was that which, among the 30 executions of the
genetic algorithm, had the lowest objective function value.
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Figure 9: Evolution of the objective function value for Scenario 2 over the generations in the 30
simulations.

Multiobjective optimization results

Figure 10 (a) and (b) show the decision variable spaces for the two larvicide control applications
in the aquatic phase. The red dots represent the optimal values found in the mono-objective
problem uA1 = 0.47 and uA2 = 0.46 at times tA1 = 7 and tA2 = 33 , respectively. In the same way,
the mono-objective optimal point for adulticide control in adult females, uF = 0.03 in tF = 31, is
present in the decision variable space shown in 10. In the three figures, it is possible to verify that
the optimal points found are present in the entire decision space, focusing on the upper bounds
of time and the amount of descending control and stepping to apply.

The problem is to minimize two functions: cost with control on the x-axis and cost with the
treatment of females on the y-axis. As this is a multiobjective problem, improving one of the
objectives means making the other worse. Figure 11 shows the Pareto front found. Let us analyze
three points: i) point M represents a higher cost with the treatment of females and a low cost with
control; ii) point P represents a more significant amount of control, lower cost of treating females;
iii) when we take the knee point N, we are trying to make a balance between the two objectives,
that is, low cost of control and low cost of treating females. Furthermore, the value of the mono-
objective function represented by the red dot is dominated by the optimal solutions. Thus, the
results indicate that it is possible to find optimal control policies balancing the costs of objective
function 5.3. Therefore, it is up to the public health manager to make the decision that best meets
the needs concerning the costs involved with Ae. aegypti control policies.
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Figure 10: Decision variable space of investment in larvicide and adulticide control. In red, is the
respective mono-objective optimal point.
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Figure 11: Dominance of Pareto-optimal.
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7 CONCLUSION

This paper describes a mono-objective and multiobjective optimization approach to reduce
mosquito intensity and Ae. aegypti related costs, whose population is described by a two-
dimensional diffusion-reaction model that describes the interaction between aquatic and adult
female stages spread across a domain. Furthermore, the model parameters depend on real rainfall
and temperature data from the case study considering the city of Lavras/Brazil.

The results of the mono-objective optimization indicate a vector reduction in the aquatic and the
adult phase of females based on the descending and step control, cost reduction, and efficiency
of 13%. That is, the numerical simulations showed that the control interventions successfully
reduced the costs and infestation of Ae. aegypti. Through multiobjective optimization, the public
health manager has a range of possibilities for the public manager to implement a successful
control action following his financial and social reality. However, our paper opens up possibilities
for future work, such as coupling the model to human populations and considering monetary
costs in the optimization process.
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